Prediction of coal-gas compound dynamic disaster based on convolutional neural network
-
摘要: 随着我国煤矿开采逐渐进入深部区域,煤岩瓦斯复合动力灾害日益严重,对煤矿的安全生产造成极大威胁。基于某矿现场数据,采用智能预测手段对煤岩瓦斯复合动力灾害进行研究。首先,依据大数据处理流程,应用箱型图分析法(Box-plot)与多重插补法(MI)进行数据清洗,结合灰色关联度分析法(GRA)建立煤岩瓦斯复合动力灾害指标体系;然后应用主成分分析法(PCA)进行数据降维,结合深度学习中的卷积神经网络(CNN)建立基于BMGP-CNN的煤岩瓦斯复合动力灾害预测模型;运用现场案例数据将此模型与BP模型、随机森林(RF)模型、支持向量机(SVM)模型及人工神经网络(ANN)模型进行对比验证,发现BMGP-CNN模型预测结果的准确率最高,且该模型的收敛速度较快,能够在数秒内完成预测。研究结果对于煤岩瓦斯复合动力灾害的预测和防控具有重要意义。
-
关键词:
- 煤岩瓦斯复合动力灾害 /
- 深度学习 /
- 大数据 /
- 指标体系 /
- 预测模型
Abstract: As deep mining becomes prevalent in China's coal mining industry, coal-gas compound dynamic disasters pose increasing threat to the safety production of coal mines. This paper adopts the field data of Pingmei No. 8 coal mine for analysis, with the attempt to predict coal-gas compound dynamic disaster through convolutional neural network. Following the routine of the big data processing, we first employed Box-plot analysis and multiple interpolation method(MI)to clean the data. Combined with grey relation analysis(GRA), we established a coal-gas compound dynamic disaster index system. Then, principal component analysis(PCA)is used for dimensionality reduction of the data. Combined with the convolution neural network(CNN)in deep learning, we established the coal-gas compound dynamic disaster prediction model based on BMGP-CNN. The field data is used to compare and verify this model with BP, random forest(RF), support vector machine(SVM)and artificial neural network(ANN). It is found that BMGP-CNN model yields prediction results with satisfactory accuracy and quick convergence. The results offer implications for the prediction and prevention of coal-gas compound dynamic disasters.-
Key words:
- coal-gas compound dynamic disaster /
- deep learning /
- big data /
- index system /
- prediction model
-
表 1 部分完整的初始数据
Table 1. Initial data(part)
序号 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 结果 1 0.17 34.15 2.62 0 830 4.5 14.30 4 0.5 58.03 22.98 9 1.5 0.22 0 0 1 2 0.50 28.10 0.20 1 434 4.5 2.22 2 0.5 59.87 8.67 10 0.6 0.07 0.47 0 0 3 0.24 29.06 0.50 1 589 3.2 6.21 3 0.5 76.79 11.05 18 0.8 0.10 0 0 0 4 0.44 29.06 0.78 1 588 2.9 6.98 3 0.5 43.44 9.29 19 1.2 0.47 0 0 2 5 0.81 29.06 0.42 1 566 3.5 5.84 2 0.5 45.78 9.00 16 0 0 0 0 2 6 0.17 34.15 2.65 0 840 4.5 14.10 4 0.5 35.05 23.52 11 1.2 0.19 0 0 1 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 105 0.22 29.06 0.42 1 557 3.1 5.67 3 0.5 73.13 21.08 21 0 0 0.36 0.17 1 表 2 关联度与关联度排序
Table 2. Relevance and relevance ranking
影响因素 关联度 关联度排名 X1 0.879 48 1 X2 0.879 45 2 X3 0.874 15 3 X4 0.872 95 4 X5 0.872 83 5 X6 0.869 74 6 X7 0.867 43 7 X8 0.867 35 8 X9 0.849 27 9 X10 0.849 00 10 X11 0.836 547 11 X12 0.821 76 12 X13 0.788 63 13 X14 0.786 68 14 X15 0.776 99 15 X16 0.762 00 16 表 3 成分矩阵
Table 3. Component matrix
原始指标 成分 1 2 3 4 埋深 0.887 -0.276 0.073 -0.062 软分层变化 0.001 0.468 0.729 0.045 煤体破坏类型 0.603 0.402 -0.088 0.223 煤厚 -0.029 0.108 0.142 0.837 断层数量 0.689 0.449 -0.284 0.093 坚固性系数 -0.483 -0.608 0.402 0.066 瓦斯压力 0.580 -0.209 0.393 0.220 瓦斯含量 0.810 -0.319 0.112 -0.213 顶板抗压强度 -0.042 0.547 0.386 -0.474 最大主应力 0.828 -0.237 0.095 -0.075 表 4 计算后的部分公因子数据
Table 4. Calculated common factor data(part)
序号 Y1 Y2 Y3 Y4 1 16.122 -1.956 1.166 -0.143 2 -5.264 0.002 0.055 0.229 3 1.120 0.789 0.024 -1.968 4 0.906 -1.686 -0.191 -1.054 5 -2.115 -3.156 0.760 -0.670 6 16.336 -2.853 0.500 0.690 ⋮ ⋮ ⋮ ⋮ ⋮ 105 1.487 -1.247 0.025 0.504 表 5 卷积神经网络预测模型参数
Table 5. Structure of CNN prediction model
模型参数 取值 卷积核尺寸 1×5 卷积核数量 128 步长 1 卷积层数 1 激活函数 ReLU 池化层参数 1×5,1 Dropout概率 0 表 6 各个模型的预测结果与准确率
Table 6. Prediction results and accuracy of each model
序号 实际结果 BP RF SVM ANN 1 0 0 1 0 0 2 2 2 2 0 2 3 1 1 0 2 1 4 2 2 2 2 2 5 0 0 0 0 1 6 0 1 2 0 0 7 2 2 2 2 2 8 1 1 1 1 1 9 0 0 0 0 2 10 2 2 2 0 2 11 1 1 1 1 1 12 2 0 2 2 2 13 1 2 1 1 2 14 1 2 1 1 1 15 2 1 2 1 2 测试集准确率/% 66.7 80 73.3 80 -
[1] Wang K, Zhou A T, Zhang J F, et al. Real-time numerical simulations and experimental research for the propagation characteristics of shock waves and gas flow during coal and gas outburst[J]. Safety Science, 2012, 50(4): 835-841. doi: 10.1016/j.ssci.2011.08.024 [2] Wang K, Du F. Coal-gas compound dynamic disasters in China: a review[J]. Process Safety and Environmental Protection, 2020, 133: 1-17. doi: 10.1016/j.psep.2019.10.006 [3] 潘一山. 煤与瓦斯突出、冲击地压复合动力灾害一体化研究[J]. 煤炭学报, 2016, 41(1): 105-112. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201601016.htmPan Yishan. Integrated study on compound dynamic disaster of coal-gas outburst and rockburst[J]. Journal of China Coal Society, 2016, 41(1): 105-112. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201601016.htm [4] 王凯, 赵恩彪, 郭阳阳, 等. 中间主应力影响下含瓦斯复合煤岩体变形渗流及能量演化特征研究[J]. 矿业科学学报, 2023, 8(1): 74-82. doi: 10.19606/j.cnki.jmst.2023.01.007Wang Kai, Zhao Enbiao, Guo Yangyang, et al. Deformation, seepage and energy evolution characteristics of gas-bearing coal-rock under intermediate principal stress[J]. Journal of Mining Science and Technology, 2023, 8(1): 74-82. doi: 10.19606/j.cnki.jmst.2023.01.007 [5] 朱丽媛, 潘一山, 李忠华, 等. 深部矿井冲击地压、瓦斯突出复合灾害发生机理[J]. 煤炭学报, 2018, 43(11): 3042-3050. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201811011.htmZhu Liyuan, Pan Yishan, Li Zhonghua, et al. Mechanisms of rockburst and outburst compound disaster in deep mine[J]. Journal of China Coal Society, 2018, 43(11): 3042-3050. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201811011.htm [6] 尹光志, 李星, 鲁俊, 等. 深部开采动静载荷作用下复合动力灾害致灾机理研究[J]. 煤炭学报, 2017, 42(9): 2316-2326. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201709015.htmYin Guangzhi, Li Xing, Lu Jun, et al. Disaster-causing mechanism of compound dynamic disaster in deep mining under static and dynamic load conditions[J]. Journal of China Coal Society, 2017, 42(9): 2316-2326. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201709015.htm [7] 齐庆新, 潘一山, 李海涛, 等. 煤矿深部开采煤岩动力灾害防控理论基础与关键技术[J]. 煤炭学报, 2020, 45(5): 1567-1584. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202005003.htmQi Qingxin, Pan Yishan, Li Haitao, et al. Theoretical basis and key technology of prevention and control of coal-rock dynamic disasters in deep coal mining[J]. Journal of China Coal Society, 2020, 45(5): 1567-1584. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202005003.htm [8] 张庆贺, 袁亮, 杨科, 等. 深井煤岩动力灾害的连续卸压开采防治机理[J]. 采矿与安全工程学报, 2019, 36(1): 80-86, 102. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201901012.htmZhang Qinghe, Yuan Liang, Yang Ke, et al. Mechanism analysis on continuous stress-relief mining for preventing coal and rock dynamic disasters in deep coal mines[J]. Journal of Mining & Safety Engineering, 2019, 36(1): 80-86, 102. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201901012.htm [9] 刘喜军. 深井煤岩瓦斯动力灾害防治研究[J]. 煤炭科学技术, 2018, 46(11): 69-75. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201811011.htmLiu Xijun. Study on coal and rock gas dynamics disaster prevention and control in deep mine[J]. Coal Science and Technology, 2018, 46(11): 69-75. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201811011.htm [10] 齐庆新, 潘一山, 舒龙勇, 等. 煤矿深部开采煤岩动力灾害多尺度分源防控理论与技术架构[J]. 煤炭学报, 2018, 43(7): 1801-1810. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201807002.htmQi Qingxin, Pan Yishan, Shu Longyong, et al. Theory and technical framework of prevention and control with different sources in multi-scales for coal and rock dynamic disasters in deep mining of coal mines[J]. Journal of China Coal Society, 2018, 43(7): 1801-1810. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201807002.htm [11] 窦林名, 何学秋, Ren Ting, 等. 动静载叠加诱发煤岩瓦斯动力灾害原理及防治技术[J]. 中国矿业大学学报, 2018, 47(1): 48-59. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201801007.htmDou Linming, He Xueqiu, Ren Ting, et al. Mechanism of coal-gas dynamic disasters caused by the superposition of static and dynamic loads and its control technology[J]. Journal of China University of Mining & Technology, 2018, 47(1): 48-59. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201801007.htm [12] 王佳信, 周宗红, 张继华, 等. 煤与瓦斯突出危险性预测的SαS-PNN模型及应用[J]. 传感技术学报, 2017, 30(7): 1112-1118. https://www.cnki.com.cn/Article/CJFDTOTAL-CGJS201707024.htmWang Jiaxin, Zhou Zonghong, Zhang Jihua, et al. SαS-PNN model for forecast of coal and gas outburst risk and its application[J]. Chinese Journal of Sensors and Actuators, 2017, 30(7): 1112-1118. https://www.cnki.com.cn/Article/CJFDTOTAL-CGJS201707024.htm [13] 王雨虹, 刘璐璐, 付华, 等. 基于改进BP神经网络的煤矿冲击地压预测方法研究[J]. 煤炭科学技术, 2017, 45(10): 36-40. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201710006.htmWang Yuhong, Liu Lulu, Fu Hua, et al. Study on predicted method of mine pressure bump based on improved BP neural network[J]. Coal Science and Technology, 2017, 45(10): 36-40. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201710006.htm [14] 孙玉峰, 李中才. 支持向量机法在煤与瓦斯突出分析中的应用研究[J]. 中国安全科学学报, 2010, 20(1): 25-30, 179. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201001006.htmSun Yufeng, Li Zhongcai. Application study of SVM in analysis of coal and gas outburst[J]. China Safety Science Journal, 2010, 20(1): 25-30, 179. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201001006.htm [15] Pan Y M, Deng Y H, Zhang Q Z, et al. Dynamic prediction of gas emission based on wavelet neural network toolbox[J]. Journal of Coal Science and Engineering: China, 2013, 19(2): 174-181. [16] 史策, 高峰, 陈连城, 等. 煤矿冲击地压预测的PCA-GRNN方法[J]. 中国安全科学学报, 2016, 26(7): 119-124. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201607022.htmShi Ce, Gao Feng, Chen Liancheng, et al. Prediction of pressure bump in coal mine by PCA-GRNN[J]. China Safety Science Journal, 2016, 26(7): 119-124. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201607022.htm [17] Spitzer M, Wildenhain J, Rappsilber J, et al. BoxPlotR: a web tool for generation of box plots[J]. Nature Methods, 2014, 11(2): 121-2. [18] 孙玲莉, 董世杰, 杨贵军. 常用多重插补法的插补重数选择[J]. 统计与决策, 2019, 35(23): 5-10. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJC201923002.htmSun Lingli, Dong Shijie, Yang Guijun. Selection of imputation multiplicity on multiple imputation methods[J]. Statistics & Decision, 2019, 35(23): 5-10. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJC201923002.htm [19] 赵国飞, 康天合, 郭俊庆, 等. 基于区间值灰色关联度的煤层气区块生产潜力评价模型及应用[J]. 采矿与安全工程学报, 2020, 37(4): 794-803. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL202004018.htmZhao Guofei, Kang Tianhe, Guo Junqing, et al. Application of evaluation model for the production potential of coalbed methane block based on interval value grey relational degree theory[J]. Journal of Mining & Safety Engineering, 2020, 37(4): 794-803. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL202004018.htm [20] 陈绍杰, 刘久潭, 汪锋, 等. 基于PCA-RA的滨海矿井水源识别技术研究[J]. 煤炭科学技术, 2021, 49(2): 217-225. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202102025.htmChen Shaojie, Liu Jiutan, Wang Feng, et al. Technological research on water source identiftcation of coastal coalmines based on PCA-RA[J]. Coal Science and Technology, 2021, 49(2): 217-225. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202102025.htm [21] 朱志洁, 张宏伟, 韩军, 等. 基于PCA-BP神经网络的煤与瓦斯突出预测研究[J]. 中国安全科学学报, 2013, 23(4): 45-50. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201304009.htmZhu Zhijie, Zhang Hongwei, Han Jun, et al. Prediction of coal and gas outburst based on PCA-BP neural network[J]. China Safety Science Journal, 2013, 23(4): 45-50. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201304009.htm [22] 王道元, 王俊, 孟志斌, 等. 煤矿安全风险智能分级管控与信息预警系统[J]. 煤炭科学技术, 2021, 49(10): 136-144. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202110019.htmWang Daoyuan, Wang Jun, Meng Zhibin, et al. Intelligent hierarchical management & control and information pre-warning system of coal mine safety risk[J]. Coal Science and Technology, 2021, 49(10): 136-144. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202110019.htm [23] 刘慧敏, 徐方远, 刘宝举, 等. 基于CNN-LSTM的岩爆危险等级时序预测方法[J]. 中南大学学报: 自然科学版, 2021, 52(3): 659-670. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202103001.htmLiu Huimin, Xu Fangyuan, Liu Baoju, et al. Time-series prediction method for risk level of rockburst disaster based on CNN-LSTM[J]. Journal of Central South University: Science and Technology, 2021, 52(3): 659-670. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202103001.htm [24] 陆继翔, 张琪培, 杨志宏, 等. 基于CNN-LSTM混合神经网络模型的短期负荷预测方法[J]. 电力系统自动化, 2019, 43(8): 131-137. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXT201908018.htmLu Jixiang, Zhang Qipei, Yang Zhihong, et al. Short-term load forecasting method based on CNN-LSTM hybrid neural network model[J]. Automation of Electric Power Systems, 2019, 43(8): 131-137. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXT201908018.htm [25] 孙鑫, 徐杨, 林柏泉, 等. 煤与瓦斯突出影响因素评价分析的模糊层次分析方法[J]. 中国安全科学学报, 2009, 19(10): 145-149, 177. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK200910028.htmSun Xin, Xu Yang, Lin Baiquan, et al. Evaluation and analysis on influential factors of coal and gas outburst based on fuzzy analytic hierarchy process[J]. China Safety Science Journal, 2009, 19(10): 145-149, 177. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK200910028.htm [26] 赵红泽, 王宇新, 李淋, 等. 基于灰色关联分析与GA-BP神经网络的拉斗铲生产能力预测[J]. 矿业科学学报, 2020, 5(1): 58-66. http://kykxxb.cumtb.edu.cn/article/id/265Zhao Hongze, Wang Xinyu, Li Lin, et al. Production capacity prediction of dragline based on grey correlation analysis and GA-BP neural network[J]. Journal of Mining Science and Technology, 2020, 5(1): 58-66. http://kykxxb.cumtb.edu.cn/article/id/265 [27] Shah A D, Bartlett J W, James C, et al. Comparison of random forest and parametric imputation models for imputing missing data using MICE: A CALIBER study[J]. American Journal of Epidemiology, 2014(6): 764-774. [28] 温廷新, 张波, 邵良杉. 煤与瓦斯突出预测的随机森林模型[J]. 计算机工程与应用, 2014, 50(10): 233-237. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201410050.htmWen Tingxin, Zhang Bo, Shao Liangshan. Prediction of coal and gas outburst based on random forest model[J]. Computer Engineering and Applications, 2014, 50(10): 233-237. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201410050.htm [29] 赵学军, 李育珍, 武文斌. BP神经网络改进TSVM的矿产资源评价模型研究[J]. 矿业科学学报, 2016, 1(2): 188-195. http://kykxxb.cumtb.edu.cn/article/id/26Zhao Xuejun, Li Yuzhen, Wu Wenbin. Mineral resources evaluation model research based on BP neural network and TSVM algorithm[J]. Journal of Mining Science and Technology, 2016, 1(2): 188-195. http://kykxxb.cumtb.edu.cn/article/id/26 [30] 由伟, 刘亚秀, 李永, 等. 用人工神经网络预测煤与瓦斯突出[J]. 煤炭学报, 2007, 32(3): 285-287. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB200703013.htmYou Wei, Liu Yaxiu, Li Yong, et al. Predicting the coal and gas outburst using artificial neural network[J]. Journal of China Coal Society, 2007, 32(3): 285-287. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB200703013.htm [31] 牟全斌. 工作面煤与瓦斯突出区域预测模型探讨[J]. 煤炭科学技术, 2009, 37(9): 44-47. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ200909015.htmMu Quanbin. Discussion on prediction model of coal and gas outburst area in coal mining face[J]. Coal Science and Technology, 2009, 37(9): 44-47. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ200909015.htm -