留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同负温和含水率模拟月壤SHPB试验与分析

马芹永 鲍晓璇

马芹永, 鲍晓璇. 不同负温和含水率模拟月壤SHPB试验与分析[J]. 矿业科学学报, 2023, 8(1): 93-101. doi: 10.19606/j.cnki.jmst.2023.01.009
引用本文: 马芹永, 鲍晓璇. 不同负温和含水率模拟月壤SHPB试验与分析[J]. 矿业科学学报, 2023, 8(1): 93-101. doi: 10.19606/j.cnki.jmst.2023.01.009
Ma Qinyong, Bao Xiaoxuan. SHPB tests and analysis of lunar soil simulant under different negative temperatures and water contents[J]. Journal of Mining Science and Technology, 2023, 8(1): 93-101. doi: 10.19606/j.cnki.jmst.2023.01.009
Citation: Ma Qinyong, Bao Xiaoxuan. SHPB tests and analysis of lunar soil simulant under different negative temperatures and water contents[J]. Journal of Mining Science and Technology, 2023, 8(1): 93-101. doi: 10.19606/j.cnki.jmst.2023.01.009

不同负温和含水率模拟月壤SHPB试验与分析

doi: 10.19606/j.cnki.jmst.2023.01.009
基金项目: 

安徽理工大学学科人才资助 2018-03

详细信息
    作者简介:

    马芹永(1964—),男,安徽宿州人,博士,教授,博士生导师,主要从事地下与隧道工程等方面的教学与研究工作。E-mail:qyma@aust.edu.cn

  • 中图分类号: TU41

SHPB tests and analysis of lunar soil simulant under different negative temperatures and water contents

  • 摘要: 为了解月球永久阴影区月壤的动态力学性能,以玄武质模拟月壤进行动态冲击试验,研究不同负温、不同含水率及不同应变率加载下模拟月壤的动态应力-应变曲线特性、动态抗压强度和破坏特征,分析动态抗压强度、动弹性模量与模拟月壤负温、含水率、应变率的关系。试验结果表明:动态抗压强度与应变率呈正相关关系;破坏形态类型主要为锥形剪切破坏和颗粒状粉碎破坏;破碎块度分布具有良好的分形特征。研究结果能为未来月球资源研究提供参考。
  • 图  1  试样加载装置

    Figure  1.  Sample loading device

    图  2  原始波形

    Figure  2.  Original wave pattern

    图  3  模拟月壤的典型应变率时程图(-20 ℃)

    Figure  3.  The strain rate time-history curve of lunar soil simulant(-20 ℃)

    图  4  动态应力-应变曲线(-20 ℃)

    Figure  4.  Dynamic stress-strain curve(-20 ℃)

    图  5  模拟月壤动态抗压强度与初始含水率的关系

    Figure  5.  Relationship between dynamic compressive strength and moisture content of lunar soil simulant

    图  6  模拟月壤动态抗压强度与温度的变化关系

    Figure  6.  Relationship between the dynamic compressive strength and temperature of lunar soil simulant

    图  7  模拟月壤动态抗压强度与平均应变率的关系

    Figure  7.  Relationship between dynamic compressive strength and average strain rate of lunar soil simulant

    图  8  模拟月壤动弹性模量与平均应变率的关系

    Figure  8.  Relationship between the elastic modulus and the average strain rate of the lunar soil simulant

    图  9  模拟月壤在不同应变率条件下典型破碎形态

    Figure  9.  Fragmentation morphology of lunar soil simulant under different strain rate

    图  10  不同冲击气压下模拟月壤的ln(Mr/MT)-lnr曲线

    Figure  10.  The ln(Mr/MT)-lnr curve of lunar soil simulants

    表  1  各种模拟月壤与月壤样品成分对比表

    Table  1.   Composition of various lunar soil simulant and lunar soil samples %

    样品 SiO2 TiO2 Al2O3 FeO MnO MgO CaO K2O P2O5
    Apollo 11[17] 42.20 7.80 13.60 15.30 0.20 7.80 11.90 0.16 0.05
    Apollo 14[17] 48.10 1.70 17.40 10.40 0.14 9.40 10.70 0.55 0.51
    JSC-1[9] 47.71 1.59 15.02 10.79 0.18 9.01 10.42 0.82 0.66
    CAS-1[18] 49.24 1.91 15.08 11.47 0.14 8.72 7.25 1.03 0.30
    CUG-1A[19] 48.32 2.38 16.01 12.50 0.15 6.95 7.39 2.12 0.54
    试验样品 48.05 1.18 17.08 8.60 0.14 5.58 8.45 1.20 0.61
    下载: 导出CSV

    表  2  模拟月壤颗粒级配

    Table  2.   Gradation of lunar soil simulant particles

    粒径/mm 2.00~5.00 0.50~2.00 0.25~0.50 0.075~0.25 <0.075
    含量/% 15 21.5 16 27.5 20
    下载: 导出CSV

    表  3  试验方案

    Table  3.   Test plan

    变量 数值
    温度/℃ -5、-10、-15、-20
    冲击气压/MPa 0.2、0.3、0.35
    含水率/% 5、8、10
    下载: 导出CSV
  • [1] 郑永春, 张锋, 付晓辉, 等. 月球上的水: 探测历程与新的证据[J]. 地质学报, 2011, 85(7): 1069-1078. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201107002.htm

    Zheng Yongchun, Zhang Feng, Fu Xiaohui, et al. Water on the moon: exploration history and new evidence[J]. Acta Geologica Sinica, 2011, 85(7): 1069-1078. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201107002.htm
    [2] 谢和平, 张国庆, 李存宝. 月球恒温层地下空间利用探索构想[J]. 工程科学与技术, 2020, 52(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202001001.htm

    Xie Heping, Zhang Guoqing, Li Cunbao. Scheme of underground space utilization of lunar thermostatic layer[J]. Advanced Engineering Sciences, 2020, 52(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202001001.htm
    [3] Cesaretti G, Dini E, de Kestelier X, et al. Building components for an outpost on the Lunar soil by means of a novel 3D printing technology[J]. Acta Astronautica, 2014, 93: 430-450. doi: 10.1016/j.actaastro.2013.07.034
    [4] Davis G, Montes C, Eklund S. Preparation of lunar regolith based geopolymer cement under heat and vacuum[J]. Advances in Space Research, 2017, 59(7): 1872-1885. doi: 10.1016/j.asr.2017.01.024
    [5] Fisher E A, Lucey P G, Lemelin M, et al. Evidence for surface water ice in the lunar polar regions using reflectance measurements from the Lunar Orbiter Laser Altimeter and temperature measurements from the Diviner Lunar Radiometer Experiment[J]. Icarus, 2017, 292: 74-85. doi: 10.1016/j.icarus.2017.03.023
    [6] Li S, Lucey P G, Milliken R E, et al. Direct evidence of surface exposed water ice in the lunar polar regions[J]. PNAS, 2018, 115(36): 8907-8912. doi: 10.1073/pnas.1802345115
    [7] Pitcher C, Kömle N, Leibniz O, et al. Investigation of the properties of icy lunar polar regolith simulants[J]. Advances in Space Research, 2016, 57(5): 1197-1208. doi: 10.1016/j.asr.2015.12.030
    [8] Atkinson J, Zacny K. Mechanical properties of icy lunar regolith: application to ISRU on the moon and Mars[C]// 16th Biennial International Conference on Engineering, Science, Construction, and Operations in Challenging Environments. April 9-12, 2018, Cleveland, Ohio. Reston, VA, USA: American Society of Civil Engineers, 2018: 109-120.
    [9] Atkinson J, Prasad M, Abbud-Madrid A, et al. Penetration and relaxation behavior of JSC-1A lunar regolith simulant under cryogenic conditions[J]. Icarus, 2020, 346: 113812. doi: 10.1016/j.icarus.2020.113812
    [10] 刘德赟, 王露斯, 孙启臣, 等. 月球极区冻土模拟月壤钻进试验研究[J]. 科学技术与工程, 2018, 18(25): 256-261. doi: 10.3969/j.issn.1671-1815.2018.25.040

    Liu Deyun, Wang Lusi, Sun Qichen, et al. Drilling experiment of simulated icy soil of lunar polar region[J]. Science Technology and Engineering, 2018, 18(25): 256-261. doi: 10.3969/j.issn.1671-1815.2018.25.040
    [11] 唐钧跃. 高密实度模拟月壤自适应钻进取芯特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
    [12] 何立臣, 王超, 姚伟. 含冰模拟月壤水资源提取实验研究[J]. 航天器环境工程, 2020, 37(5): 511-518. https://www.cnki.com.cn/Article/CJFDTOTAL-HTHJ202005016.htm

    He Lichen, Wang Chao, Yao Wei. Experimental study of water resource extraction from frozen lunar regolith simulants[J]. Spacecraft Environment Engineering, 2020, 37(5): 511-518. https://www.cnki.com.cn/Article/CJFDTOTAL-HTHJ202005016.htm
    [13] 杨智颖. 基于ANSYS/Ls-dyna数值模拟的月壤采样冲击破碎研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
    [14] 何成旦, 李亚胜, 温智, 等. 月球极区冻结模拟月壤物理力学特性研究[J]. 冰川冻土, 2021, 43(6): 1773-1781. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT202106013.htm

    He Chengdan, Li Yasheng, Wen Zhi, et al. Study on physical and mechanical properties of frozen simulated lunar soil in lunar polar region[J]. Journal of Glaciology and Geocryology, 2021, 43(6): 1773-1781. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT202106013.htm
    [15] 魏久淇, 王明洋, 邱艳宇, 等. 钙质砂动态力学特性试验研究[J]. 振动与冲击, 2018, 37(24): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201824003.htm

    Wei Jiuqi, Wang Mingyang, Qiu Yanyu, et al. Impact compressive response of calcareous sand[J]. Journal of Vibration and Shock, 2018, 37(24): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201824003.htm
    [16] Qian Y Q, Xiao L, Yin S, et al. The regolith properties of the Chang'e-5 landing region and the ground drilling experiments using lunar regolith simulants[J]. Icarus, 2020, 337: 113508.
    [17] Chang B C, Ann K Y. Development of assessment methods of lunar soil simulants with respect to chemical composition[J]. Advances in Space Research, 2019, 63(8): 2584-2597.
    [18] 张宇, 陈善雄, 余飞, 等. 低应力水平下CAS-1模拟月壤力学特性试验研究[J]. 岩石力学与工程学报, 2015, 34(1): 174-181. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201501019.htm

    Zhang Yu, Chen Shanxiong, Yu Fei, et al. Experimental study of mechanical properties of lunar soil simulant cas-1 under low stress[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(1): 174-181. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201501019.htm
    [19] 贺新星, 肖龙, 黄俊, 等. 模拟月壤研究进展及CUG-1A模拟月壤[J]. 地质科技情报, 2011, 30(4): 137-142. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201104023.htm

    He Xinxing, Xiao Long, Huang Jun, et al. Lunar soil simulant development and lunar soil simulant CUG-1A[J]. Geological Science and Technology Information, 2011, 30(4): 137-142. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201104023.htm
    [20] 纪杰杰, 李洪涛, 吴发名, 等. 冲击荷载作用下岩石破碎分形特征[J]. 振动与冲击, 2020, 39(13): 176-183, 214. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202013027.htm

    Ji Jiejie, Li Hongtao, Wu Faming, et al. Fractal characteristics of rock fragmentation under impact load[J]. Journal of Vibration and Shock, 2020, 39(13): 176-183, 214. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202013027.htm
    [21] 凌天龙, 刘殿书, 梁书锋, 等. 花岗岩损伤型黏弹性动态本构模型研究[J]. 矿业科学学报, 2019, 4(5): 403-409. http://kykxxb.cumtb.edu.cn/article/id/239

    Ling Tianlong, Liu Dianshu, Liang Shufeng, et al. Research on damage viscoelastic dynamic constitutive model of granite[J]. Journal of Mining Science and Technology, 2019, 4(5): 403-409. http://kykxxb.cumtb.edu.cn/article/id/239
    [22] 杨阳, 王建国, 杨仁树, 等. 高应变率下饱水冻结红砂岩变形破坏分析[J]. 岩石力学与工程学报, 2018, 37(S2): 4016-4026. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2018S2023.htm

    Yang Yang, Wang Jianguo, Yang Renshu, et al. Analysis of deformation and fracture of the saturated frozen red sandstone under high strain rate[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(S2): 4016-4026. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2018S2023.htm
    [23] 马芹永, 高常辉. 冲击荷载下玄武岩纤维水泥土吸能及分形特征[J]. 岩土力学, 2018, 39(11): 3921-3928, 3968. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201811003.htm

    Ma Qinyong, Gao Changhui. Energy absorption and fractal characteristics of basalt fiber-reinforced cement-soil under impact loads[J]. Rock and Soil Mechanics, 2018, 39(11): 3921-3928, 3968. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201811003.htm
    [24] 施劲松, 许金余, 任韦波, 等. 高温后混凝土冲击破碎能耗及分形特征研究[J]. 兵工学报, 2014, 35(5): 703-710. https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201405019.htm

    Shi Jinsong, Xu Jinyu, Ren Weibo, et al. Research on energy dissipation and fractal characteristics of concrete after exposure to elevated temperatures under impact loading[J]. Acta Armamentarii, 2014, 35(5): 703-710. https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201405019.htm
    [25] 刘冬桥, 张晓云, 何满潮, 等. 砂岩冲击岩爆实验碎屑研究[J]. 矿业科学学报, 2018, 3(3): 246-252. http://kykxxb.cumtb.edu.cn/article/id/144

    Liu Dongqiao, Zhang Xiaoyun, He Manchao, et al. Study on sandstone fragments from impact rockburst experiments[J]. Journal of Mining Science and Technology, 2018, 3(3): 246-252. http://kykxxb.cumtb.edu.cn/article/id/144
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  241
  • HTML全文浏览量:  58
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-28
  • 修回日期:  2022-10-14
  • 刊出日期:  2023-02-28

目录

    /

    返回文章
    返回