留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤巷液压锚杆钻机随钻参数采集系统及其应用

岳中文 戴诗清 李杨 岳小磊 李世辉 曹武

岳中文, 戴诗清, 李杨, 岳小磊, 李世辉, 曹武. 煤巷液压锚杆钻机随钻参数采集系统及其应用[J]. 矿业科学学报, 2023, 8(1): 66-73. doi: 10.19606/j.cnki.jmst.2023.01.006
引用本文: 岳中文, 戴诗清, 李杨, 岳小磊, 李世辉, 曹武. 煤巷液压锚杆钻机随钻参数采集系统及其应用[J]. 矿业科学学报, 2023, 8(1): 66-73. doi: 10.19606/j.cnki.jmst.2023.01.006
Yue Zhongwen, Dai Shiqing, Li Yang, Yue Xiaolei, Li Shihui, Cao Wu. The drilling parameter acquisition system of hydraulic anchor drilling rig in coal mine roadways and its application[J]. Journal of Mining Science and Technology, 2023, 8(1): 66-73. doi: 10.19606/j.cnki.jmst.2023.01.006
Citation: Yue Zhongwen, Dai Shiqing, Li Yang, Yue Xiaolei, Li Shihui, Cao Wu. The drilling parameter acquisition system of hydraulic anchor drilling rig in coal mine roadways and its application[J]. Journal of Mining Science and Technology, 2023, 8(1): 66-73. doi: 10.19606/j.cnki.jmst.2023.01.006

煤巷液压锚杆钻机随钻参数采集系统及其应用

doi: 10.19606/j.cnki.jmst.2023.01.006
基金项目: 

国家重点研发计划 2021YFC2902103

国家自然科学基金面上项目 51974318

国家自然科学基金面上项目 52174094

详细信息
    作者简介:

    岳中文(1975—),男,安徽淮南人,教授,博士生导师,主要从事岩土工程、爆破工程等方面的研究工作。Tel:010-62339683,E-mail:zwyue75@163.com

  • 中图分类号: TD175; TD263

The drilling parameter acquisition system of hydraulic anchor drilling rig in coal mine roadways and its application

  • 摘要: 围岩岩性随钻识别技术能够实时获取巷道围岩力学参数,为煤巷围岩支护提供基础保障。本文基于煤矿巷道液压锚杆钻机研发了煤巷液压锚杆钻机随钻参数采集系统,包括钻进系统、动力系统、监测系统及试件平台。利用该系统进行了不同强度砂浆组合试件的钻进实验,结果表明,系统性能良好,随钻参数变化规律明显,扭矩和推进压强在不同岩层交界处有明显的跃迁现象。为了验证岩石强度随钻识别的可靠性,通过随钻参数计算破岩比能,进一步分析了随钻参数与抗压强度的关系。基于破岩比能法该系统可以实现随钻参数对岩石力学性能的识别。
  • 图  1  煤巷液压锚杆钻机随钻参数采集系统

    Figure  1.  Drilling parameter acquisition system of hydraulic anchor drilling rig in coal mine roadways

    图  2  监测系统的硬件系统

    Figure  2.  The hardware system of the monitoring system

    图  3  监测系统的工作原理

    Figure  3.  Working principle of monitoring system

    图  4  转速扭矩复合传感器安装位置

    Figure  4.  Installation position of speed and torque composite sensor

    图  5  层状组合试件示意图(单位:mm)

    Figure  5.  Schematic diagram of a layered combination specimen

    图  6  钻进前后的试件

    Figure  6.  The specimen before and after drilling

    图  7  试件Y3的钻进深度和转速随时间变化曲线

    Figure  7.  The drilling depth and rotation speed of specimen Y3 changes over time

    图  8  试件Y3的扭矩和推进压强随钻进深度变化曲线

    Figure  8.  The torque and propulsion pressure of specimen Y3 changes with the drilling depth

    图  9  SE与UCS的关系曲线

    Figure  9.  The relationship between SE and UCS

    表  1  液压锚杆钻机的技术参数

    Table  1.   Technical parameters of hydraulic anchor drilling rig

    项目 参数
    额定扭矩/(N·m) 360
    额定转速/(r·min-1) 550
    钻孔直径/mm 28~32
    锚杆钻孔深度/m 0~18
    适应钎具/mm 19
    下载: 导出CSV

    表  2  传感器的技术参数

    Table  2.   Technical parameters of the sensors

    传感器 参数范围 单位 精度/% 过载能力/%
    扭矩传感器 0~500 N·m 0.5 150
    转速传感器 0~500 r·min-1 0.5 150
    位移传感器 0~3 m 0.5 120
    压力传感器 0~50 MPa 0.5 125
    下载: 导出CSV

    表  3  不同强度砂浆的配合比及单轴抗压强度

    Table  3.   The mix ratio and uniaxial compressive strength of mortars of different strengths

    砂浆类型 水泥/(kg·m-3) 砂子/(kg·m-3) 水/(kg·m-3) UCS/MPa
    M5 210 3.68
    M15 320 1 450 310 16.41
    M25 395 25.58
    注:水泥强度等级均为32.5。
    下载: 导出CSV

    表  4  随钻参数采集实验结果

    Table  4.   Results of experimental data acquisition of drilling parameters

    n/(r·min-1) UCS/MPa v/(m·s-1) T/(N·m) pt/MPa SE/(kJ·cm-3)
    220 4.58 0.026 35.99 6.63 14.23
    17.71 0.026 36.53 7.21 18.90
    26.53 0.026 41.41 8.25 21.49
    320 3.52 0.029 20.75 5.26 13.72
    16.69 0.029 27.69 6.37 17.79
    26.97 0.029 35.00 6.90 21.57
    420 2.94 0.034 13.48 4.27 13.59
    14.83 0.034 18.31 4.74 17.53
    23.24 0.034 25.33 5.96 21.25
    下载: 导出CSV
  • [1] 杜龙龙, 宋宜猛, 冯宇峰. 煤矿顶板事故分析与防治对策研[J]. 中国煤炭, 2020, 46(10): 50-54.

    Du Longlong, Song Yimeng, Feng Yufeng. Reearch on analysis and prevention countermeasures of coal mine roof accidents[J]. China Coal, 2020, 46(10): 50-54.
    [2] 左建平, 文金浩, 刘德军, 等. 深部巷道等强支护控制理论[J]. 矿业科学学报, 2021, 6(2): 148-159. doi: 10.19606/j.cnki.jmst.2021.02.002

    Zuo Jianping, Wen Jinhao, Liu Dejun, et al. Control theory of uniform strength support in deep roadway[J]. Journal of Mining Science and Technology, 2021, 6(2): 148-159. doi: 10.19606/j.cnki.jmst.2021.02.002
    [3] 刘德军, 左建平, 刘海雁, 等. 我国煤矿巷道支护理论及技术的现状与发展趋势[J]. 矿业科学学报, 2020, 5(1): 22-33. http://kykxxb.cumtb.edu.cn/article/id/262

    Liu Dejun, Zuo Jianping, Liu Haiyan, et al. Development and present situation of support theory and technology in coal mine roadway in China[J]. Journal of Mining Science and Technology, 2020, 5(1): 22-23. http://kykxxb.cumtb.edu.cn/article/id/262
    [4] Cao R H, Cao P, Lin H, et al. Mechanical behavior of brittle rock-like specimens with pre-existing fissures under uniaxial loading: experimental studies and particle mechanics approach[J]. Rock Mechanics and Rock Engineering, 2016, 49(3): 763-783. doi: 10.1007/s00603-015-0779-x
    [5] Li D Y, Wong L N Y. Point load test on meta-sedimentary rocks and correlation to UCS and BTS[J]. Rock Mechanics and Rock Engineering, 2013, 46(4): 889-896. doi: 10.1007/s00603-012-0299-x
    [6] Elhakim A F. The use of point load test for Dubai weak calcareous sandstones[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2015, 7(4): 452-457. doi: 10.1016/j.jrmge.2015.06.003
    [7] Chen G, Wu Z, Wang F J, et al. Study on the application of a comprehensive technique for geological prediction in tunneling[J]. Environmental Earth Sciences, 2011, 62(8): 1667-1671. doi: 10.1007/s12665-010-0651-y
    [8] Aalizad S A, Rashidinejad F. Prediction of penetration rate of rotary-percussive drilling using artificial neural networks-a case study[J]. Archives of Mining Sciences, 2012, 57(3): 715-728. doi: 10.2478/v10267-012-0046-x
    [9] Yaşar E, Ranjith P G, Viete D R. An experimental investigation into the drilling and physico-mechanical properties of a rock-like brittle material[J]. Journal of Petroleum Science and Engineering, 2011, 76(3/4): 185-193.
    [10] 岳中文, 岳小磊, 杨仁树, 等. 随钻岩性识别技术研究进展[J]. 矿业科学学报, 2022, 7(4): 389-402. doi: 10.19606/j.cnki.jmst.2022.04.001

    Yue Zhongwen, Yue Xiaolei, Yang Renshu, et al. Progress of lithology identification technology while drilling[J]. Journal of Mining Science and Technology, 2022, 7(4): 389-402. doi: 10.19606/j.cnki.jmst.2022.04.001
    [11] 岳中琦. 钻孔过程监测(DPM)对工程岩体质量评价方法的完善与提升[J]. 岩石力学与工程学报, 2014, 33(10): 1977-1996. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201410005.htm

    Yue Zhongqi. Drilling process monitoring for refining and upgrading rock mass quality classification methods[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(10): 1977-1996. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201410005.htm
    [12] 岳中琦, 李焯芬, 罗锦添, 等. 香港大学钻孔过程数字监测仪在土钉加固斜坡工程中的应用[J]. 岩石力学与工程学报, 2002, 21(11): 1685-1690. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200211023.htm

    Yue Zhongqi, Li Zhuofen, Luo Jintian, et al. Digital monitor for the drilling process at the University of Hong Kong Application in soil nail reinforcement slope engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(11): 1685-1690. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200211023.htm
    [13] 谭卓英, 李文, 岳鹏君, 等. 基于钻进参数的岩土地层结构识别技术与方法[J]. 岩土工程学报, 2015, 37(7): 1328-1333. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201507023.htm

    Tan Zhuoying, Li Wen, Yue Pengjun, et al. Techniques and approaches for identification of geo-formation structure based on diamond drilling parameters[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(7): 1328-1333. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201507023.htm
    [14] 李宁, 李骞, 宋玲. 基于回转切削的岩石力学参数获取新思路[J]. 岩石力学与工程学报, 2015, 34(2): 323-329. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201502013.htm

    Li Ning, Li Qian, Song Ling. Acquiring mechanical parameters of rock based on rotational cutting[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(2): 323-329. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201502013.htm
    [15] 宋玲, 李宁, 刘奉银. 较硬地层中旋进触探技术应用可行性研究[J]. 岩土力学, 2011, 32(2): 635-640. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201102060.htm

    Song Ling, Li Ning, Liu Fengyin. Research on applicable feasibility of rotary penetration technique in harder strata[J]. Rock and Soil Mechanics, 2011, 32(2): 635-640. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201102060.htm
    [16] 王琦, 秦乾, 高松, 等. 数字钻探随钻参数与岩石单轴抗压强度关系[J]. 煤炭学报, 2018, 43(5): 1289-1295. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201805011.htm

    Wang Qi, Qin Qian, Gao Song, et al. Relationship between rock drilling parameters and rock uniaxial compressive strength based on energy analysis[J]. Journal of China Coal Society, 2018, 43(5): 1289-1295. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201805011.htm
    [17] Wang Q, Gao Song, Jiang Bei, et al. Rock-cutting mechanics model and its application based on slip-line theory[J]. International Journal of Geomechanics, 2018, 18(5): 1-10.
    [18] Wang Q, Gao H K, Jiang B, et al. Relationship model for the drilling parameters from a digital drilling rig versus the rock mechanical parameters and its application[J]. Arabian Journal of Geosciences, 2018, 11(13): 1-10.
    [19] 王琦, 高红科, 蒋振华, 等. 地下工程围岩数字钻探测试系统研发与应用[J]. 岩石力学与工程学报, 2020, 39(2): 301-310. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202002010.htm

    Wang Qi, Gao Hongke, Jiang Zhenhua, et al. Development and application of a surrounding rock digital drilling test system of underground engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(2): 301-310. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202002010.htm
    [20] 王玉杰, 佘磊, 赵宇飞, 等. 基于数字钻进技术的岩石强度参数测定试验研究[J]. 岩土工程学报, 2020, 42(9): 1669-1678. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202009017.htm

    Wang Yujie, She Lei, Zhao Yufei, et al. Experimental study on measurement of rock strength parameters based on digital drilling technology[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1669-1678. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202009017.htm
    [21] 曹瑞琅, 王玉杰, 赵宇飞, 等. 基于钻进过程指数定量评价岩体完整性原位试验研究[J]. 岩土工程学报, 2021, 43(4): 679-687. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202104013.htm

    Cao Ruilang, Wang Yujie, Zhao Yufei, et al. In-situ tests on quantitative evaluation of rock mass integrity based on drilling process index[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 679-687. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202104013.htm
    [22] 何明明. 基于旋切触探技术的岩体力学参数预报研究[D]. 西安: 西安理工大学, 2017.
    [23] 于广东, 孟国营, 冯学文. 煤矿巷道顶板强度随钻识别系统与钻速优化研究[J]. 河南理工大学学报: 自然科学版, 2022, 41(3): 112-118. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXB202203015.htm

    Yu Guangdong, Meng Guoying, Feng Xuewen. Identification system of roof strength of coal mine while drilling and optimization study on drilling speed[J]. Journal of Henan Polytechnic University: Natural Science, 2022, 41(3): 112-118. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXB202203015.htm
    [24] 李鑫涛. 煤巷顶板锚固孔钻进特性试验研究[D]. 焦作: 河南理工大学, 2015.
    [25] 刘栋梁. 煤巷顶板锚固孔钻进动力响应特性研究[D]. 焦作: 河南理工大学, 2014.
    [26] Gui M W, Soga K, Bolton M D, et al. Instrumented borehole drilling for subsurface investigation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(4): 283-291.
    [27] Teale R. The concept of specific energy in rock drilling[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1965, 2(1): 57-73.
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  493
  • HTML全文浏览量:  140
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-04
  • 修回日期:  2022-08-29
  • 刊出日期:  2023-02-28

目录

    /

    返回文章
    返回