留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深部井巷工程高预应力NPR耦合支护技术

孙晓明 张勇 何满潮 杨金坤

孙晓明, 张勇, 何满潮, 杨金坤. 深部井巷工程高预应力NPR耦合支护技术[J]. 矿业科学学报, 2023, 8(1): 50-65. doi: 10.19606/j.cnki.jmst.2023.01.005
引用本文: 孙晓明, 张勇, 何满潮, 杨金坤. 深部井巷工程高预应力NPR耦合支护技术[J]. 矿业科学学报, 2023, 8(1): 50-65. doi: 10.19606/j.cnki.jmst.2023.01.005
Sun Xiaoming, Zhang Yong, He Manchao, Yang Jinkun. Research of high pre-stress NPR support technology in deep shaft roadway engineering[J]. Journal of Mining Science and Technology, 2023, 8(1): 50-65. doi: 10.19606/j.cnki.jmst.2023.01.005
Citation: Sun Xiaoming, Zhang Yong, He Manchao, Yang Jinkun. Research of high pre-stress NPR support technology in deep shaft roadway engineering[J]. Journal of Mining Science and Technology, 2023, 8(1): 50-65. doi: 10.19606/j.cnki.jmst.2023.01.005

深部井巷工程高预应力NPR耦合支护技术

doi: 10.19606/j.cnki.jmst.2023.01.005
基金项目: 

国家自然科学基金 51904306

国家重点研发计划 2016YFC0600901

中央高校基本科研业务费专项资金 2021XJLJ02

详细信息
    作者简介:

    孙晓明(1970—),男,山东泰安人,博士,教授,博士生导师,主要从事岩土工程和软岩工程力学等方面的教学与研究工作。E-mail:sunxiaoming@cumtb.edu.cn

    通讯作者:

    张勇(1989—),男,山东济宁人,博士,高级工程师,硕士生导师,主要从事深部岩体力学与工程灾害控制方面的教学与研究工作。E-mail:cumtbzy558@163.com

  • 中图分类号: TD350

Research of high pre-stress NPR support technology in deep shaft roadway engineering

  • 摘要: 深部煤炭资源是未来我国能源安全的重要保证,但受深部“三高一复杂”地质力学环境影响,深部井巷工程岩体大变形失稳问题日渐突出。为解决该问题,以支护-围岩相互作用为突破点,研发了具有高强度、高恒阻、大变形力学特性的系列NPR锚杆/索,构建了NPR锚杆的本构方程,并开展室内和现场综合力学试验,验证了NPR锚杆/索的独特力学特性;分析了NPR支护-围岩相互作用关系,推导了NPR支护岩体本构关系,阐明了采用NPR耦合支护后的开挖补偿力学效应,揭示了高预应力NPR耦合支护机理;结合大强煤矿实际工况,提出了深部泵房吸水井以NPR锚杆/索为核心的集约化硐室群NPR支护技术。数值分析和现场监测数据显示:高预应力NPR耦合支护技术可显著提高支护-围岩的承载特性,有效减小井巷工程岩体塑性区的分布及发展范围;支护后支护-围岩应力场趋于均匀化,围岩整体变形量减小68 % 以上,确保了深部井巷工程岩体的长期稳定。研究成果可为类似条件下的深部井巷工程稳定性控制提供借鉴。
  • 图  1  深部井巷工程典型破坏特征

    Figure  1.  Typical failure characteristics of deep roadway engineering

    图  2  1G NPR锚杆/索系列新材料

    Figure  2.  1G NPR bolt / cable series new materials

    图  3  NPR恒阻装置示意图[30-31]

    Figure  3.  NPR constant resistance device

    图  4  NPR恒阻装置的负泊松比效应

    Figure  4.  Negative Poisson's ratio effect of NPR constant resistance device

    图  5  1G NPR锚杆/索的理想塑性和米级大变形力学特性

    Figure  5.  Ideal plasticity and large deformation mechanical properties of 1G NPR anchor cable

    图  6  1G NPR锚杆/索冲击动力学特性

    Figure  6.  Impact dynamic characteristics of 1G NPR anchor cable

    图  7  两次爆破冲击试验前后巷道状态

    Figure  7.  Roadway state before and after two blasting impact tests

    图  8  拉伸断口形态对比

    Figure  8.  Comparison of tensile fracture morphology

    图  9  NPR钢抗弯特性

    Figure  9.  Bending characteristics of NPR steel

    图  10  1G NPR锚杆/索拉伸特性对比

    Figure  10.  Comparison of 1 G NPR bolt /cable tensile properties

    图  11  1G NPR锚杆/索预应力设计

    Figure  11.  1G NPR anchor/cable pre-stress design

    图  12  2G NPR材料预应力设计

    Figure  12.  2G NPR material pre-stress design

    图  13  开挖补偿力学效应

    σ1—围岩破坏时Z方向最大主应力;σ2—围岩破坏时Y方向最大主应力;σ3—围岩破坏时X方向最大主应力

    Figure  13.  Mechanical effect of excavation compensation

    图  14  深部井巷工程高预应力NPR耦合支护理论

    Figure  14.  High pre-stress NPR coupling support theory for deep roadway engineering

    图  15  地层柱状

    Figure  15.  Stratum column

    图  16  传统泵房吸水井硐室群布局设计

    Figure  16.  Layout design of chamber group of suction well of traditional pump house

    图  17  泵房吸水井集约化设计

    Figure  17.  Intensive design of pump house suction well

    图  18  计算模型

    Figure  18.  Calculation model

    图  19  开挖顺序

    Figure  19.  Excavation sequence

    图  20  监测断面

    Figure  20.  Monitoring section

    图  21  两种设计下围岩位移云图

    Figure  21.  Cloud chart of surrounding rock displacement under two design

    图  22  两种设计下不同岩柱断面位移云图

    Figure  22.  Cloud chart of different rock pillar sections under two design

    图  23  两种设计下不同岩柱断面塑性区分布

    Figure  23.  Distribution of plastic zones of different rock pillar sections under two designs

    图  24  支护计算模型

    Figure  24.  Support calculation model

    图  25  监测断面设置

    Figure  25.  Monitoring section setting

    图  26  两种设计下围岩位移云图

    Figure  26.  Cloud chart of surrounding rock displacement under two designs

    图  27  两种支护下不同断面处X向位移云图

    Figure  27.  Cloud chart of X-direction displacement at different sections under two kinds of supports

    图  28  两种支护下不同断面处Z向位移云图

    Figure  28.  Cloud chart of Z-direction displacement at different sections under two kinds of supports

    图  29  两种支护下不同断面塑性区分布

    Figure  29.  Plastic zone distribution at different sections under two kinds of supports

    图  30  泵房硐室群高预应力NPR耦合支护设计断面(单位:mm)

    Figure  30.  Cross section of high pre-stressed NPR coupling support design for pump chambers(unit: mm)

    图  31  泵房吸水井硐室群测站及测点布置

    Figure  31.  Layout of group measuring stations and measuring points of intake well chamber of pump house

    图  32  泵房硐室群围岩位移-时间曲线

    Figure  32.  Displacement-time curve of surrounding rock of pump chamber group

    图  33  泵房吸水井硐室群施工及效果

    Figure  33.  Construction of chamber group of pump house suction well and its effect

    表  1  计算模型物理力学参数

    Table  1.   Physical and mechanical parameters of calculation model

    岩性名称 密度/(kg·m-3) 弹性模量/GPa 泊松比 黏聚力/MPa 内摩擦角/ (°) 抗拉强度/MPa
    粉砂岩 2 510 7.8 0.23 0.5 21 0.2
    砂砾岩 2 600 8.5 0.19 0.6 24 1.3
    喷射混凝土(C20) 25.5 0.2
    砌碹(C40) 32.5 0.2
    下载: 导出CSV

    表  2  1G NPR锚索参数

    Table  2.   Parameters of 1G NPR cable

    恒阻力/kN 弹性模量/GPa 横截面积/m2 水泥浆黏结力/(N·m-1) 水泥浆刚度/(N·m-2)
    350 200 3.7×10-4 1×1011 2×1011
    下载: 导出CSV
  • [1] 何满潮. 深部建井力学研究进展[J]. 煤炭学报, 2021, 46(3): 726-746. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202103004.htm

    He Manchao. Research progress of deep shaft construction mechanics[J]. Journal of China Coal Society, 2021, 46(3): 726-746. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202103004.htm
    [2] 刘志强, 宋朝阳, 纪洪广, 等. 深部矿产资源开采矿井建设模式及其关键技术[J]. 煤炭学报, 2021, 46(3): 826-845. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202103011.htm

    Liu Zhiqiang, Song Zhaoyang, Ji Hongguang, et al. Construction mode and key technology of mining shaft engineering for deep mineral resources[J]. Journal of China Coal Society, 2021, 46(3): 826-845. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202103011.htm
    [3] 何满潮, 谢和平, 彭苏萍, 等. 深部开采岩体力学研究[J]. 岩石力学与工程学报, 2005, 24(16): 2803-2813. doi: 10.3321/j.issn:1000-6915.2005.16.001

    He Manchao, Xie Heping, Peng Suping, et al. Study on rock mechanics in deep mining engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(16): 2803-2813. doi: 10.3321/j.issn:1000-6915.2005.16.001
    [4] 钱七虎. 岩爆、冲击地压的定义、机制、分类及其定量预测模型[J]. 岩土力学, 2014, 35(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201401001.htm

    Qian Qihu. Definition, mechanism, classification and quantitative forecast model for rockburst and pressure bump[J]. Rock and Soil Mechanics, 2014, 35(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201401001.htm
    [5] 谢和平, 高峰, 鞠杨, 等. 深部开采的定量界定与分析[J]. 煤炭学报, 2015, 40(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201501001.htm

    Xie Heping, Gao Feng, Ju Yang, et al. Quantitative definition and investigation of deep mining[J]. Journal of China Coal Society, 2015, 40(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201501001.htm
    [6] 何满潮. 深部的概念体系及工程评价指标[J]. 岩石力学与工程学报, 2005, 24(16): 2854-2858. doi: 10.3321/j.issn:1000-6915.2005.16.007

    He Manchao. Conception system and evaluation indexes for deep engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(16): 2854-2858. doi: 10.3321/j.issn:1000-6915.2005.16.007
    [7] 张建民, 李全生, 张勇, 等. 煤炭深部开采界定及采动响应分析[J]. 煤炭学报, 2019, 44(5): 1314-1325. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201905004.htm

    Zhang Jianmin, Li Quansheng, Zhang Yong, et al. Definition of deep coal mining and response analysis[J]. Journal of China Coal Society, 2019, 44(5): 1314-1325. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201905004.htm
    [8] 康红普. 我国煤矿巷道围岩控制技术发展70年及展望[J]. 岩石力学与工程学报, 2021, 40(1): 1-30. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202101002.htm

    Kang Hongpu. Seventy years development and prospects of strata control technologies for coal mine roadways in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(1): 1-30. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202101002.htm
    [9] Cook N, Ortlepp W. A yielding rock bolt[J]. Chamber of Mines of South Africa. Research Organization Bulletin, 1968, 8(14): 19-24.
    [10] Ortlepp W, Reed J J. Yieldable rock bolts for shock loading and grouted bolts for rock stabilization[J]. Mining Engineering, 1970, 4(5): 19-24.
    [11] 何亚男, 候朝烔, 康红普. H型杆体可拉伸锚杆: 中国, CN87211250U[P]. 1988-09-07.
    [12] 何亚男. H型杆体可拉伸锚杆的原理及应用[J]. 矿山压力与顶板管理, 1991, 8(3): 7-10, 72. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL199103001.htm

    He Yanan. Principle and application of type H rockbolts with extensible rod[J]. Ground Pressure and Strata Control, 1991, 8(3): 7-10, 72. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL199103001.htm
    [13] 何亚男, 侯朝烱. 改进型杆体可拉伸锚杆: 中国, CN2081884U[P]. 1991-07-31.
    [14] 高延法, 张文泉, 肖洪天, 等. 柔刚性可伸缩锚杆: CN2138193[P]. 1993-07-14.
    [15] 王阁. 预应力让压锚杆的数值模拟研究及其应用[D]. 青岛: 山东科技大学, 2007.
    [16] Li C C. Field observations of rock bolts in high stress rock masses[J]. Rock Mechanics and Rock Engineering, 2010, 43(4): 491-496.
    [17] Kaiser P, Mccreath D, Tannant D. Rockburst support[J]. Rockburst Research Handbook, 1995, 40(5): 19-24.
    [18] 李春林. 岩爆条件和岩爆支护[J]. 岩石力学与工程学报, 2019, 38(4): 674-682. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201904003.htm

    Li Chunlin. Rockburst conditions and rockburst support[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(4): 674-682. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201904003.htm
    [19] Ortlepp W. The design of support for the containment of rockburst damage in tunnels: An engineering approach[C]//International Symposium on Rock Support. Sudbury: 1992: 593-609.
    [20] Simser B, Andrieux P, Langevin F, et al. Field behaviour and failure modes of modified conebolts at the Craig, LaRonde and Brunswick Mines in Canada[J]. Deep and High Stress Mining, 2006, 2(5): 59-64.
    [21] Li C C, Doucet C. Performance of D-bolts under dynamic loading[J]. Rock Mechanics and Rock Engineering, 2012, 45(2): 193-204.
    [22] Chunlin Li C. A new energy-absorbing bolt for rock support in high stress rock masses[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(3): 396-404.
    [23] Ortlepp W, Bornman J, Erasmus N. The Durabar-a yieldable support tendon-design rationale and laboratory results[J]. Rockbursts and Seismicity in Mines, 2001, 4(2): 19-23.
    [24] Carlton R, Darlington B, Mikula P. In situ dynamic drop testing of the MD bolt at Mt Charlotte Gold Mine[C]//Proceedings of the Seventh International Symposium on Ground Support in Mining and Underground Construction. Australian Centre for Geomechanics, Perth, 2013.
    [25] Charette F, Plouffe M. Roofex-results of laboratory testing of a new concept of yieldable tendon[C]//Proceedings of the International Conference on Deep and High Stress Mining, Proceedings of the Fourth International Seminar on Deep and High Stress Mining. Australian Centre for Geomechanics, Perth, 2007.
    [26] Varden R, Lachenicht R, Player J, et al. Development and implementation of the Garford dynamic bolt at the Kanowna Belle Mine[C]//10th Underground Operators' Conference. Launceston, 2008.
    [27] Wu Y K, Oldsen J. Development of a new yielding rock bolt-Yield-Lok bolt[C]//Proceedings of the 44th US Rock Mechanics Symposium. Salt Lake City, 2010: 1-6.
    [28] 王爱文, 潘一山, 赵宝友, 等. 防冲吸能锚杆(索)的静动态力学特性与现场试验研究[J]. 岩土工程学报, 2017, 39(7): 1292-1301. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201707020.htm

    Wang Aiwen, Pan Yishan, Zhao Baoyou, et al. Static and dynamic mechanical properties of energy absorption bolts (cable) and field tests[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(7): 1292-1301. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201707020.htm
    [29] Toupin R A. Saint-Venant's Principle[J]. Archive for Rational Mechanics and Analysis, 1965, 18(2): 83-96.
    [30] 何满潮, 冯吉利. 恒阻大变形锚杆: 中国, CN101858225A[P]. 2010-10-13.
    [31] 何满潮, 李晨, 宫伟力, 等. NPR锚杆/索支护原理及大变形控制技术[J]. 岩石力学与工程学报, 2016, 35(8): 1513-1529. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201608001.htm

    He Manchao, Li Chen, Gong Weili, et al. Support principles of NPR bolts/cables and control techniques of large deformation[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(8): 1513-1529. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201608001.htm
    [32] Sun X M, Zhang Y, Wang D, et al. Mechanical properties and supporting effect of CRLD bolts under static pull test conditions[J]. International Journal of Minerals, Metallurgy, and Materials, 2017, 24(1): 1-9.
    [33] 何满潮, 郭志飚. 恒阻大变形锚杆力学特性及其工程应用[J]. 岩石力学与工程学报, 2014, 33(7): 1297-1308. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201407001.htm

    He Manchao, Guo Zhibiao. Mechanical property and engineering application of anchor bolt with constant resistance and large deformation[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(7): 1297-1308. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201407001.htm
    [34] 宫伟力, 孙雅星, 高霞, 等. 基于落锤冲击试验的恒阻大变形锚杆动力学特性[J]. 岩石力学与工程学报, 2018, 37(11): 2498-2509. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201811008.htm

    Gong Weili, Sun Yaxing, Gao Xia, et al. Dynamic characteristics of constant-resistance-large-deformation bolts based on weight-dropping tests[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(11): 2498-2509. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201811008.htm
    [35] 何满潮, 王炯, 孙晓明, 等. 负泊松比效应锚索的力学特性及其在冲击地压防治中的应用研究[J]. 煤炭学报, 2014, 39(2): 214-221. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201402002.htm

    He Manchao, Wang Jiong, Sun Xiaoming, et al. Mechanics characteristics and applications of prevention and control rock bursts of the negative poisson's ratio effect anchor[J]. Journal of China Coal Society, 2014, 39(2): 214-221. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201402002.htm
    [36] 何满潮, 郭洪燕, 夏敏. NPR无磁性锚杆钢材料及其生产方法: 中国, ZL201810504225.9[P]. 2018-05-23.
    [37] 何满潮, 夏敏, 郭洪燕, 等. NPR钢筋盘圆的加工工艺: 中国, CN110523801B[P]. 2019-09-12.
    [38] Cai M, Kaiser P K. Rockburst support reference book-volume 1: rockburst phenomenon and support characteristics[M]. Sudbury: Laurentian University press, 2018.
    [39] He M C, Gong W L, Wang J, et al. Development of a novel energy-absorbing bolt with extraordinarily large elongation and constant resistance[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 67: 29-42.
    [40] 何满潮, 孙晓明. 中国煤矿软岩巷道工程支护设计与施工指南[M]. 北京: 科学出版社, 2004: 128-143.
  • 加载中
图(33) / 表(2)
计量
  • 文章访问数:  465
  • HTML全文浏览量:  96
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-01
  • 修回日期:  2022-11-04
  • 刊出日期:  2023-02-28

目录

    /

    返回文章
    返回