留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

火成岩侵蚀煤层易自然发火特性及关键致因研究

秦波涛 史全林 曲宝 刘金龙

秦波涛, 史全林, 曲宝, 刘金龙. 火成岩侵蚀煤层易自然发火特性及关键致因研究[J]. 矿业科学学报, 2023, 8(1): 15-25. doi: 10.19606/j.cnki.jmst.2023.01.002
引用本文: 秦波涛, 史全林, 曲宝, 刘金龙. 火成岩侵蚀煤层易自然发火特性及关键致因研究[J]. 矿业科学学报, 2023, 8(1): 15-25. doi: 10.19606/j.cnki.jmst.2023.01.002
Qin Botao, Shi Quanlin, Qu Bao, Liu Jinlong. The key causes and characteristics of spontaneous combustion of coal seams affected by igneous intrusion[J]. Journal of Mining Science and Technology, 2023, 8(1): 15-25. doi: 10.19606/j.cnki.jmst.2023.01.002
Citation: Qin Botao, Shi Quanlin, Qu Bao, Liu Jinlong. The key causes and characteristics of spontaneous combustion of coal seams affected by igneous intrusion[J]. Journal of Mining Science and Technology, 2023, 8(1): 15-25. doi: 10.19606/j.cnki.jmst.2023.01.002

火成岩侵蚀煤层易自然发火特性及关键致因研究

doi: 10.19606/j.cnki.jmst.2023.01.002
基金项目: 

国家杰出青年科学基金 51825402

国家自然科学基金青年基金 52004278

江苏省自然科学基金 BK20200658

详细信息
    作者简介:

    秦波涛(1977—),男,重庆忠县人,博士,教授,主要从事矿井热动力灾害防控等方面的研究工作。Tel:0516-83885694;E-mail:qbt2003@163.com

  • 中图分类号: TD752.2

The key causes and characteristics of spontaneous combustion of coal seams affected by igneous intrusion

  • 摘要: 为探明火成岩侵蚀导致侵蚀煤层自燃特性变化的关键致因,以受火成岩侵入范围广、煤自然发火严重的铁法煤田大兴煤矿为研究对象,采集火成岩侵蚀形成的变质煤和未受影响的原生煤进行研究。本文利用同步热分析仪、煤自燃特性测定装置等测试了煤样的产热升温特性、气体产生规律、微观结构参数的差异。结果表明,变质煤在低温阶段的放热量较原生煤显著提高,交叉点温度降低了13.2 ℃,更早进入氧化增重阶段;当环境温度超过90 ℃,变质煤的氧化产热与反应速率急速增加,CO和CO2等氧化气体产物生成速率显著升高,表明变质煤的氧化活性高于原生煤;火成岩侵蚀煤层的高温高压作用改变了煤体的孔隙结构,导致煤中有机物质热解与挥发,使得变质煤中的微孔和介孔孔容减小、比表面积降低,宏观孔的孔容达到原生煤的3倍,平均孔径和孔隙率显著增大,有利于氧气分子在煤体内部的输送运移与吸附反应,同时变质煤的含氧官能团较原生煤减少,脂肪烃含量由27.98 % 提高至29.07 %,增强了变质煤的氧化活性。此外,火成岩侵蚀活动导致侵蚀煤层开采时漏风加剧、遗煤氧化时间长、氧化带范围广。火成岩对煤层自然发火内在因素和外在因素的影响,导致侵蚀煤层面临严重的煤自燃灾害。
  • 图  1  研究区域及取样位置示意图

    Figure  1.  The location of collected coals

    图  2  煤样的热流曲线和热重曲线

    Figure  2.  DSC and TG curves of coal

    图  3  煤样氧化升温过程中炉温与煤温的变化曲线

    Figure  3.  Variation of coal temperature and furnace temperature during oxidation process

    图  4  煤样耗氧速率变化曲线

    Figure  4.  Change curve of oxygen consumption rate of coal

    图  5  煤样CO和CO2气体生成速率变化曲线

    Figure  5.  Change curves of CO and CO2 generation rates of coal

    图  6  煤样在不同环境温度阶段产热与温升特性

    Figure  6.  Characteristics of heat production and temperature rise of coal samples in different ambient temperature stages

    图  7  煤样孔径分布特征

    Figure  7.  Pore size distribution characteristic of coal

    图  8  煤样孔径分布与阶段进汞量关系曲线

    Figure  8.  Relation curve between pore size distribution and stage mercury intake of coal

    图  9  煤样红外光谱图

    Figure  9.  FTIR Spectrum of coal

    图  10  煤样红外光谱图的分峰拟合结果

    Figure  10.  Separation of the infrared spectrogram of coal

    图  11  变质煤破碎后原始赋存气体与氧气置换示意图

    Figure  11.  The replacement of naturally occurring gas and oxygen after crushing metamorphic coal

    表  1  实验煤样工业分析结果

    Table  1.   Proximate analysis of coal samples  %

    煤样 工业分析 镜质组反射率Ro
    Mad FCad Vad Aad
    原生煤 4.70 54.64 32.58 8.08 0.62
    变质煤 3.49 64.66 23.43 8.42 1.14
    下载: 导出CSV

    表  2  煤样孔结构特征参数

    Table  2.   Pore structure parameters of coal samples

    煤样 BET比表面积/(m2·g-1) 平均孔径/nm HK微孔孔容/(mm3·g-1) BJK介孔孔容/(mm3·g-1)
    原生煤 15.5 4.85 5.05 10.9
    变质煤 3.94 7.99 1.19 4.21
    下载: 导出CSV

    表  3  煤样中各主要活性基团谱吸收峰面积占比

    Table  3.   Infrared absorption peak area proportion of main functional groups in coal  %

    煤样 脂肪烃 芳香烃 含氧官能团 矿物
    CH3/CH2/CH C=C OH、C=O、COOH等 钙矾石、硫铁矿等
    原生煤 27.98 7.09 61.85 3.08
    变质煤 29.07 7.17 56.70 7.06
    下载: 导出CSV
  • [1] Costa M, Moura H, Pinto de Jesus A, et al. Effects of magmatic fluids in coals of são Pedro da cova coalfield, Douro carboniferous basin, Portugal: insights from inorganic geochemistry[J]. Minerals, 2022, 12(2): 275. doi: 10.3390/min12020275
    [2] Qin Y J, Jin K, Tian F C, et al. Effects of ultrathin igneous sill intrusion on the petrology, pore structure and ad/desorption properties of high volatile bituminous coal: implications for the coal and gas outburst prevention[J]. Fuel, 2022, 316: 123340. doi: 10.1016/j.fuel.2022.123340
    [3] Stewart A K, Massey M, Padgett P L, et al. Influence of a basic intrusion on the vitrinite reflectance and chemistry of the Springfield(No. 5)coal, Harrisburg, Illinois[J]. International Journal of Coal Geology, 2005, 63(1/2): 58-67.
    [4] 闫浩, 张吉雄, 张强, 等. 巨厚火成岩下采动覆岩应力场-裂隙场耦合演化机制[J]. 煤炭学报, 2016, 41(9): 2173-2179. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201609005.htm

    Yan Hao, Zhang Jixiong, Zhang Qiang, et al. Coupling evolution mechanism of mining-induced overlying strata stress field and crack field under extremely thick igneous rock[J]. Journal of China Coal Society, 2016, 41(9): 2173-2179. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201609005.htm
    [5] 王亮, 郭海军, 程远平, 等. 岩浆岩环境煤层瓦斯异常赋存特征与动力灾害防控关键技术[J]. 煤炭学报, 2022, 47(3): 1244-1259. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202203018.htm

    Wang Liang, Guo Haijun, Cheng Yuanping, et al. Abnormal coal seam gas occurrence characteristics and the dynamic disaster control technologies in the magmatic rock intrusion area[J]. Journal of China Coal Society, 2022, 47(3): 1244-1259. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202203018.htm
    [6] 吴斌, 孟凡彬. 岩浆岩侵入煤层的地震属性识别技术[J]. 煤田地质与勘探, 2020, 48(6): 64-71. doi: 10.3969/j.issn.1001-1986.2020.06.009

    Wu Bin, Meng Fanbin. Seismic attribute recognition technology of magmatic rock intrusive coal seam[J]. Coal Geology & Exploration, 2020, 48(6): 64-71. doi: 10.3969/j.issn.1001-1986.2020.06.009
    [7] 蒋静宇. 岩浆岩侵入对瓦斯赋存的控制作用及突出灾害防治技术: 以淮北矿区为例[D]. 徐州: 中国矿业大学, 2012.
    [8] Shi Q L, Qin B T, Liang H J, et al. Effects of igneous intrusions on the structure and spontaneous combustion propensity of coal: a case study of bituminous coal in Daxing Mine, China[J]. Fuel, 2018, 216: 181-189. doi: 10.1016/j.fuel.2017.12.012
    [9] Bulguroglu M E, Milkov A V. Thickness matters: Influence of dolerite sills on the thermal maturity of surrounding rocks in a coal bed methane play in Botswana[J]. Marine and Petroleum Geology, 2020, 111: 219-229. doi: 10.1016/j.marpetgeo.2019.08.016
    [10] 代世峰, 任德贻, 刘建荣, 等. 河北峰峰矿区煤中微量有害元素的赋存与分布[J]. 中国矿业大学学报, 2003, 32(4): 358-362. doi: 10.3321/j.issn:1000-1964.2003.04.004

    Dai Shifeng, Ren Deyi, Liu Jianrong, et al. Occurrence and distribution of minor toxic elements in coals of Fengfeng coalfield, Heibei Province, North China[J]. Journal of China University of Mining & Technology, 2003, 32(4): 358-362. doi: 10.3321/j.issn:1000-1964.2003.04.004
    [11] Liu J J, Dai S F, Song H J, et al. Geological factors controlling variations in the mineralogical and elemental compositions of Late Permian coals from the Zhijin-Nayong Coalfield, western Guizhou, China[J]. International Journal of Coal Geology, 2021, 247: 103855. doi: 10.1016/j.coal.2021.103855
    [12] Mastalerz M, Drobniak A, Schimmelmann A. Changes in optical properties, chemistry, and micropore and mesopore characteristics of bituminous coal at the contact with dikes in the Illinois Basin[J]. International Journal of Coal Geology, 2009, 77(3/4): 310-319.
    [13] Jiang J Y, Cheng Y P, Wang L, et al. Petrographic and geochemical effects of sill intrusions on coal and their implications for gas outbursts in the Wolonghu Mine, Huaibei Coalfield, China[J]. International Journal of Coal Geology, 2011, 88(1): 55-66. doi: 10.1016/j.coal.2011.08.007
    [14] Şenel İ G, Gürüz A G, Yücel H, et al. Characterization of pore structure of Turkish coals[J]. Energy & Fuels, 2001, 15(2): 331-338.
    [15] Bu Y C, Niu H Y, Wang H Y, et al. Study on pore structure change and lean oxygen re-ignition characteristics of high-temperature oxidized water-immersed coal[J]. Fuel, 2022, 323: 124346. doi: 10.1016/j.fuel.2022.124346
    [16] 高琳, 莫琼, 廖俊杰, 等. 物化结构对胜利褐煤自燃倾向性的影响[J]. 太原理工大学学报, 2021, 52(4): 571-577. https://www.cnki.com.cn/Article/CJFDTOTAL-TYGY202104010.htm

    Gao Lin, Mo Qiong, Liao Junjie, et al. Effect of physical and chemical structure of shengli lignite on its spontaneous combustion tendency[J]. Journal of Taiyuan University of Technology, 2021, 52(4): 571-577. https://www.cnki.com.cn/Article/CJFDTOTAL-TYGY202104010.htm
    [17] Golab A N, Carr P F. Changes in geochemistry and mineralogy of thermally altered coal, upper hunter valley, Australia[J]. International Journal of Coal Geology, 2004, 57(3/4): 197-210.
    [18] 衣刚. 大兴矿N2-706工作面采空区瓦斯与自燃灾害耦合研究[D]. 阜新: 辽宁工程技术大学, 2013.
    [19] 王亮, 杨良伟, 王瑞雪, 等. 岩浆岩床下伏煤层采空区煤自燃致灾机制与防治[J]. 煤炭科学技术, 2019, 47(1): 125-131. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201901053.htm

    Wang Liang, Yang Liangwei, Wang Ruixue, et al. Disaster occurred mechanism and prevention of coal spontaneous combustion in goaf of seam under magmatic rock bed[J]. Coal Science and Technology, 2019, 47(1): 125-131. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201901053.htm
    [20] 唐辉. 火成岩侵入条件下煤体微观结构变化研究[J]. 煤矿安全, 2022, 53(5): 46-49. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ202205008.htm

    Tang Hui. Study on changes of coal microstructure under the condition of igneous rock intrusion[J]. Safety in Coal Mines, 2022, 53(5): 46-49. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ202205008.htm
    [21] 金永飞, 张光, 郭军, 等. 硅化作用对煤低温氧化特性参数的影响规律[J]. 煤矿安全, 2022, 53(1): 31-36. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ202201005.htm

    Jin Yongfei, Zhang Guang, Guo Jun, et al. The influence of silicification on coal low-temperature oxidation characteristic parameters[J]. Safety in Coal Mines, 2022, 53(1): 31-36. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ202201005.htm
    [22] 周西华, 牛玉平, 白刚. 供风量对褐煤自燃特性参数影响的实验研究[J]. 矿业安全与环保, 2020, 47(1): 31-35. https://www.cnki.com.cn/Article/CJFDTOTAL-ENER202001007.htm

    Zhou Xihua, Niu Yuping, Bai Gang. Experimental study on the influence of air supply on characteristics of lignite spontaneous combustion[J]. Mining Safety & Environmental Protection, 2020, 47(1): 31-35. https://www.cnki.com.cn/Article/CJFDTOTAL-ENER202001007.htm
    [23] Karsner G G, Perlmutter D D. Reaction regimes in coal oxidation[J]. AIChE Journal, 1981, 27(6): 920-927.
    [24] Meng X L, Gao M Q, Chu R Z, et al. Multiple linear equation of pore structure and coal-oxygen diffusion on low temperature oxidation process of lignite[J]. Chinese Journal of Chemical Engineering, 2016, 24(6): 818-823. https://www.sciencedirect.com/science/article/pii/S1004954116304347
    [25] Kaji R, Hishinuma Y, Nakamura Y. Low temperature oxidation of coals: effects of pore structure and coal composition[J]. Fuel, 1985, 64(3): 297-302.
    [26] 李庆钊, 赵长遂, 陈晓平, 等. O2/CO2气氛燃煤半焦孔隙特性分析[J]. 工程热物理学报, 2009, 30(9): 1605-1608. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB200909049.htm

    Li Qingzhao, Zhao Changsui, Chen Xiaoping, et al. Analysis of pore structure in coal char obtained in an O2/CO2 environment[J]. Journal of Engineering Thermophysics, 2009, 30(9): 1605-1608. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB200909049.htm
    [27] Ma L Y, Zhang L, Wang D M, et al. Pore structure evolution during lean-oxygen combustion of pyrolyzed residual from low-rank coal and its effect on internal oxygen diffusion mechanism[J]. Fuel, 2022, 319: 123850.
    [28] 褚廷湘, 杨胜强, 孙燕, 等. 煤的低温氧化实验研究及红外光谱分析[J]. 中国安全科学学报, 2008, 18(1): 171-177. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK200801032.htm

    Chu Tingxiang, Yang Shengqiang, Sun Yan, et al. Experimental study on low temperature oxidization of coal and its infrared spectrum analysis[J]. China Safety Science Journal: CSSJ, 2008, 18(1): 171-177. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK200801032.htm
    [29] Dai S F, Ren D Y. Effects of magmatic intrusion on mineralogy and geochemistry of coals from the Fengfeng-Handan coalfield, Hebei, China[J]. Energy & Fuels, 2007, 21(3): 1663-1673.
    [30] Sujanti W, Zhang D. A laboratory study of spontaneous combustion of coal: the influence of inorganic matter and reactor size[J]. Fuel, 1999, 78(5): 549-556. https://www.sciencedirect.com/science/article/pii/S0016236198001884
    [31] Sujanti W, Zhang D K. Investigation into the role of inherent inorganic matter and additives in low-temperature oxidation of a Victorian brown coal[J]. Combustion Science and Technology, 2000, 152(1): 99-114.
    [32] 许家林, 钱鸣高, 金宏伟. 岩层移动离层演化规律及其应用研究[J]. 岩土工程学报, 2004, 26(5): 632-636. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200405011.htm

    Xu Jialin, Qian Minggao, Jin Hongwei. Study and application of bed separation distribution and development in the process of strata movement[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(5): 632-636. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200405011.htm
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  333
  • HTML全文浏览量:  52
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-21
  • 修回日期:  2022-09-22
  • 刊出日期:  2023-02-28

目录

    /

    返回文章
    返回