留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

乐平统含煤岩系旋回地层的天文周期驱动:以黔西北毕节地区为例

高祥宇 邵龙义 王学天 华芳辉 鲁静

高祥宇, 邵龙义, 王学天, 华芳辉, 鲁静. 乐平统含煤岩系旋回地层的天文周期驱动:以黔西北毕节地区为例[J]. 矿业科学学报, 2022, 7(1): 89-100. doi: 10.19606/j.cnki.jmst.2022.01.009
引用本文: 高祥宇, 邵龙义, 王学天, 华芳辉, 鲁静. 乐平统含煤岩系旋回地层的天文周期驱动:以黔西北毕节地区为例[J]. 矿业科学学报, 2022, 7(1): 89-100. doi: 10.19606/j.cnki.jmst.2022.01.009
Gao Xiangyu, Shao Longyi, Wang Xuetian, Hua Fanghui, Lu Jing. Astronomical forcing in Lopingian coal-bearing cycles: a case study of Bijie area in northwestern Guizhou[J]. Journal of Mining Science and Technology, 2022, 7(1): 89-100. doi: 10.19606/j.cnki.jmst.2022.01.009
Citation: Gao Xiangyu, Shao Longyi, Wang Xuetian, Hua Fanghui, Lu Jing. Astronomical forcing in Lopingian coal-bearing cycles: a case study of Bijie area in northwestern Guizhou[J]. Journal of Mining Science and Technology, 2022, 7(1): 89-100. doi: 10.19606/j.cnki.jmst.2022.01.009

乐平统含煤岩系旋回地层的天文周期驱动:以黔西北毕节地区为例

doi: 10.19606/j.cnki.jmst.2022.01.009
基金项目: 

山西省科技重大专项 20201101004

国家自然科学基金 41572090

详细信息
    作者简介:

    高祥宇(1997—),男,河南灵宝人,硕士研究生,主要从事沉积学和煤田地质学等方面的研究工作。Tel:13051885211,E-mail:957574219@qq.com

    通讯作者:

    邵龙义(1964—),男,河南灵宝人,博士,教授,主要从事沉积学和煤田地质学方面的研究工作。E-mail:ShaoL@cumtb.edu.com

  • 中图分类号: P539

Astronomical forcing in Lopingian coal-bearing cycles: a case study of Bijie area in northwestern Guizhou

  • 摘要: 为了系统地研究黔西北毕节地区乐平统含煤岩系中存在的沉积旋回及其天文周期驱动,本文采用时间序列分析法和相关系数法对该地区4个钻孔剖面的自然伽马(GR)测井数据进行旋回地层学分析与天文检验。旋回分析结果显示,研究区乐平统含煤岩系记录了405 kyr长偏心率、125 kyr和95 kyr短偏心率、40.6 kyr和33 kyr地轴斜率周期信息,并且可识别出17个由405 kyr长偏心率周期驱动形成的旋回;天文检验结果显示,乐平统含煤岩系受到天文周期驱动的可能性大于99 %。根据识别出的沉积旋回并结合前人在西南地区的层序划分结果,在研究区乐平统建立了高分辨率层序地层格架,划分出3个三级层序和17个四级层序,同时在经过调谐后得到的时间标尺上加以精确的年龄约束,建立了乐平统的天文年代标尺。对层序地层格架和年代标尺的综合分析表明,乐平统的沉积时限在6.47~7.16 Myr之间,并且底部存在0.69 Myr的穿时现象,3个三级层序的沉积时限分别是2.34 Myr、1.98 Myr、2.84 Myr。最后分析和总结了各三级层序的沉积速率变化规律,乐平统平均沉积速率在2.91~4.11 cm/kyr之间,CSⅠ的沉积速率整体呈现出“慢—快”或“快—慢—快”的变化趋势,CSⅡ沉积速率变化规律不明显,CSⅢ整体呈现出“快—慢—快—慢—快”的变化趋势。本研究所建立的层序地层格架可为毕节地区乐平统煤系高精度的地层对比提供参考,同时所建立的天文年代标尺可为研究乐平世古气候、古环境和重大历史事件的演化提供高分辨率的年代地层框架。
  • 图  1  毕节地区大地构造位置(据文献[9]修改)以及同沉积构造轮廓(据文献[10]修改)

    Figure  1.  Geotectonic locations(modified according to reference[9])and synsedimentary structure (modified according to reference[10])in Bijie area

    图  2  毕节地区乐平统(晚二叠世)地层分布(据文献[11]修改)

    Figure  2.  Distribution and correlation of the stratigraphic units of the Lopingian in Bijie area(modified according to reference[11])

    图  3  黔西地区乐平统海侵范围及层序划分方案(据文献[11-13]修改)

    Figure  3.  The transgression range and sequence division scheme of the Lopingian in western Guizhou(modified according to reference[11-13])

    图  4  毕节地区4个钻孔剖面去趋势化的自然伽马测井数据功率谱分析结果

    黑色实线—50 % 置信曲线;绿色实线—90 % 置信曲线;红色虚线—95 % 置信曲线;蓝色实线—99 % 置信曲线;E—长偏心率;e—短偏心率;o—地轴斜率;黑色矩形长度范围—相应地球轨道参数周期对应的频率范围

    Figure  4.  The power spectrum analysis results of the detrended GR series of 4 borehole section in Bijie area

    图  5  各钻孔剖面去除趋势的自然伽马测井数据相关系数法分析结果

    Figure  5.  Correlation coefficient analysis results of the detrended GR series of each borehole section

    图  6  毕节地区乐平统含煤岩系受长偏心率周期约束的高分辨率层序地层格架

    Figure  6.  High-resolution sequence stratigraphic framework of the Lopingian coal-bearing series constrained by long eccentricity cycles in Bijie area

    图  7  CH1602钻孔剖面乐平统含煤岩系天文年代标尺

    Figure  7.  Floating astronomical time scale of the Lopingian coal-bearing series in borehole section CH1602

    图  8  毕节地区乐平统含煤岩系旋回地层、层序地层、年代标尺、沉积速率综合对比

    Figure  8.  Integrated correlation scheme of cycle stratigraphy, sequence stratigraphy, age scale and sedimentation rate of the Lopingian coal-bearing series in Bijie area

    表  1  各钻孔剖面乐平统地层厚度、沉积时间及平均沉积速率

    Table  1.   Thickness, deposition time and average deposition rate of the Lopingian strata in each borehole section

    钻孔 地层厚度/m 沉积时间/Myr 平均沉积速率/(cm·kyr-1)
    KL1301 205.3 6.48 3.17
    KL17305 266.2 6.47 4.11
    CH1602 261.4 7.06 3.7
    DJ702 208.4 7.16 2.91
    下载: 导出CSV
  • [1] 吴怀春, 张世红, 冯庆来, 等. 旋回地层学理论基础、研究进展和展望[J]. 地球科学, 2011, 36(3): 409-428.

    Wu Huaichun, Zhang Shihong, Feng Qinglai, et al. Theoretical basis, research advancement and prospects of cyclostratigraphy[J]. Earth Science, 2011, 36(3): 409-428.
    [2] 黄春菊. 旋回地层学和天文年代学及其在中生代的研究现状[J]. 地学前缘, 2014, 21(2): 48-66. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201402006.htm

    Huang Chunjü. The current status of cyclostratigraphy and astrochronology in the Mesozoic[J]. Earth Science Frontiers, 2014, 21(2): 48-66. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201402006.htm
    [3] 宗毅, 沈玉林, 秦勇, 等. 基于米氏旋回的黔西盘县上二叠统煤系高频层序研究[J]. 高校地质学报, 2019, 25(4): 598-609. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201904014.htm

    Zong Yi, Shen Yulin, Qin Yong, et al. High frequency cyclic sequence based on the milankovitch cycles in upper Permian coal measures in Panxian, western Guizhou Province[J]. Geological Journal of China Universities, 2019, 25(4): 598-609. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201904014.htm
    [4] 袁学旭. 基于主成分分析的米兰科维奇旋回识别和应用研究[J]. 华北科技学院学报, 2019, 16(4): 48-56, 70. doi: 10.3969/j.issn.1672-7169.2019.04.009

    Yuan Xuexu. Recognition and application research of milankovitch cycle based on principal component analysis[J]. Journal of North China Institute of Science and Technology, 2019, 16(4): 48-56, 70. doi: 10.3969/j.issn.1672-7169.2019.04.009
    [5] 刘杰, 孙美静, 苏明, 等. 神狐海域水合物钻探区第四纪米氏旋回高频层序地层划分[J]. 海洋地质与第四纪地质, 2016, 36(2): 11-18.

    Liu Jie, Sun Meijing, Su Ming, et al. High-resolution sequence stratigraphy on milankovitch cycles in the gas hydrate drilling area of shenhu waters[J]. Marine Geology & Quaternary Geology, 2016, 36(2): 11-18.
    [6] 王燕, 袁学旭, 郭英海, 等. 黔西上二叠统长兴组米兰科维奇旋回研究[J]. 现代地质, 2019, 33(3): 598-603.

    Wang Yan, Yuan Xuexu, Guo Yinghai, et al. Milankovitch cycles of the Changxing formation of upper Permian in western Guizhou province[J]. Geoscience, 2019, 33(3): 598-603.
    [7] Wang X T, Shao L Y, Eriksson K A, et al. Evolution of a plume-influenced source-to-sink system: an example from the coupled central Emeishan large igneous Province and adjacent western Yangtze cratonic basin in the Late Permian, SW China[J]. Earth-Science Reviews, 2020, 207 : 103224. doi: 10.1016/j.earscirev.2020.103224
    [8] 常吟善, 覃军, 赵洪, 等. 基于米氏旋回理论的高频层序识别与划分: 以东海陆架盆地平湖斜坡带宝云亭地区平三段为例[J]. 海洋地质与第四纪地质, 2019, 39(3): 51-60. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201903005.htm

    Chang Yinshan, Qin Jun, Zhao Hong, et al. Identification and division of high-frequency sequence based on milakovitch cycle: a case of the 3rd member of Pinghu formation in baoyunting area, Pinghu slope zone, east China sea shelf basin[J]. Marine Geology & Quaternary Geology, 2019, 39(3): 51-60. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201903005.htm
    [9] 张国伟, 郭安林, 王岳军, 等. 中国华南大陆构造与问题[J]. 中国科学: 地球科学, 2013, 43(10): 1553-1582.

    Zhang Guowei, Guo Anlin, Wang Yuejun, et al. Tectonics of south China continent and its implications[J]. Scientia Sinica Terrae, 2013, 43(10): 1553-1582.
    [10] 王小川. 黔西川南滇东晚二叠世含煤地层沉积环境与聚煤规律[M]. 重庆: 重庆大学出版社, 1996: 11.
    [11] 邵龙义, 高彩霞, 张超, 等. 西南地区晚二叠世层序—古地理及聚煤特征[J]. 沉积学报, 2013, 31(5): 856-866.

    Shao Longyi, Gao Caixia, Zhang Chao, et al. Sequence-palaeogeography and coal aaccumulation of late Permian in southwestern China[J]. Acta Sedimentologica Sinica, 2013, 31(5): 856-866.
    [12] 汪浩. 滇东、黔西晚二叠世煤的沉积学特征及古环境意义[D]. 北京: 中国矿业大学(北京), 2011.
    [13] 邵龙义, 华芳辉, 易同生, 等. 贵州省乐平世层序-古地理及聚煤规律[J]. 煤田地质与勘探, 2021, 49(1): 45-56. doi: 10.3969/j.issn.1001-1986.2021.01.005

    Shao Longyi, Hua Fanghui, Yi Tongsheng, et al. Sequence-paleogeography and coal accumulation of Lopingian in Guizhou Province[J]. Coal Geology & Exploration, 2021, 49(1): 45-56. doi: 10.3969/j.issn.1001-1986.2021.01.005
    [14] 陈中红, 查明, 金强. 自然伽玛及自然伽玛能谱测井在沉积盆地古环境反演中的应用[J]. 地球物理学报, 2004, 47(6): 1145-1150. doi: 10.3321/j.issn:0001-5733.2004.06.031

    Chen Zhonghong, Zha Ming, Jin Qiang. Application of natural gamma ray logging and natural gamma spectrometry logging to recovering paleoenvironment of sedimentary basin[J]. Chinese Journal of Geophysics, 2004, 47(6): 1145-1150. doi: 10.3321/j.issn:0001-5733.2004.06.031
    [15] 杨雨, 付文钊, 余继峰, 等. 胶莱盆地K/Pg界线下陆相红层的旋回地层学分析[J]. 沉积学报, 2021, 39(4): 942-952. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202104013.htm

    Yang Yu, Fu Wenzhao, Yu JiFeng, et al. Cyclostratigraphical analysis of continental red beds below K/Pg boundary in the Jiaolai basin[J]. Acta Sedimentologica Sinica, 2021, 39(4)942-952. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202104013.htm
    [16] Li M S, Hinnov L, Kump L. A cycle: time-series analysis software for paleoclimate research and education[J]. Computers & Geosciences, 2019, 127: 12-22. http://hub.hku.hk/handle/10722/307530
    [17] 房强. 晚古生代冰期末期米兰科维奇旋回在华南的记录及环境响应[D]. 北京: 中国地质大学(北京), 2015.
    [18] 薛乃华, 王伟, 关成国, 等. 宜昌埃迪卡拉系陡山沱组中—下部旋回地层学研究[J]. 地层学杂志, 2020, 44(3): 250-259.

    Xue Naihua, Wang Wei, Guan Chengguo, et al. Cyclostratigraphy of the lower—middle Ediacaran Doushantuo formation in Yichang, South China[J]. Journal of Stratigraphy, 2020, 44(3): 250-259.
    [19] 江志红, 屠其璞, 施能. 多窗谱分析方法及其在全球变暖研究中的应用[J]. 气象学报, 2001, 59(4): 480-490. doi: 10.3321/j.issn:0577-6619.2001.04.010

    Jiang Zhihong, Tu Qipu, Shi Neng. Multi-taper method of spectral analysis and applications in global warming study[J]. Acta Meteorologica Sinica, 2001, 59(4): 480-490. doi: 10.3321/j.issn:0577-6619.2001.04.010
    [20] Mann M E, Lees J M. Robust estimation of background noise and signal detection in climatic time series[J]. Climatic Change, 1996, 33(3): 409-445. doi: 10.1007/BF00142586
    [21] Kodama K P, Hinnov L A. Rock magnetic cyclostratigraphy[M]. Oxford: John Wiley & Sons, Ltd, 2014.
    [22] 闫建平, 言语, 彭军, 等. 天文地层学与旋回地层学的关系、研究进展及其意义[J]. 岩性油气藏, 2017, 29(1): 147-156. doi: 10.3969/j.issn.1673-8926.2017.01.020

    Yan Jianping, Yan Yu, Peng Jun, et al. The research progress, significance and relationship of astrostratigraphy with cyclostratigraphy[J]. Lithologic Reservoirs, 2017, 29(1): 147-156. doi: 10.3969/j.issn.1673-8926.2017.01.020
    [23] 钟阳阳. 华南晚奥陶世米兰科维奇记录及其对太阳系行为的指示意义[D]. 北京: 中国地质大学(北京), 2019.
    [24] Li M S, Kump L R, Hinnov L A, et al. Tracking variable sedimentation rates and astronomical forcing in Phanerozoic paleoclimate proxy series with evolutionary correlation coefficients and hypothesis testing[J]. Earth and Planetary Science Letters, 2018, 501: 165-179. doi: 10.1016/j.epsl.2018.08.041
    [25] 吴怀春, 钟阳阳, 房强, 等. 古生代旋回地层学与天文地质年代表[J]. 矿物岩石地球化学通报, 2017, 36(5): 750-770, 696. doi: 10.3969/j.issn.1007-2802.2017.05.005

    Wu Huaichun, Zhong Yangyang, Fang Qiang, et al. Paleozoic cyclostratigraphy and astronomical time scale[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2017, 36(5): 750-770, 696. doi: 10.3969/j.issn.1007-2802.2017.05.005
    [26] Wu H C, Zhang S H, Hinnov L A, et al. Time-calibrated Milankovitch cycles for the late Permian[J]. Nature Communications, 2013, 4: 2452. doi: 10.1038/ncomms3452
    [27] He B, Xu Y G, Huang X L, et al. Age and duration of the Emeishan flood volcanism, SW China: Geochemistry and SHRIMP zircon U-Pb dating of silicic ignimbrites, post-volcanic Xuanwei Formation and clay tuff at the Chaotian section[J]. Earth and Planetary Science Letters, 2007, 255(3/4): 306-323. http://www.sciencedirect.com/science/article/pii/S0012821X06009149
    [28] Yang J H, Cawood P A, Du Y S, et al. Early Wuchiapingian cooling linked to Emeishan basaltic weathering?[J]. Earth and Planetary Science Letters, 2018, 492: 102-111. doi: 10.1016/j.epsl.2018.04.004
    [29] Wang J, Shao L Y, Wang H, et al. SHRIMP zircon U-Pb ages from coal beds across the Permian-Triassic boundary, eastern Yunnan, southwestern China[J]. Journal of Palaeogeography, 2018, 7(2): 117-129. doi: 10.1016/j.jop.2018.01.002
    [30] Yuan D X, Shen S Z, Henderson C M, et al. Integrative timescale for the Lopingian (Late Permian): a review and update from Shangsi, South China[J]. Earth-Science Reviews, 2019, 188: 190-209. doi: 10.1016/j.earscirev.2018.11.002
    [31] Vail P R, Mitchum R M, Thompson S. Seismic stratigraphy and global changes of sea level, part 4: global cycles of relative changes of sea level[C]// Seismic Stratigraphy-Applications to Hydrocarbon Exploration. Oklahoma: American Association of Petroleum Geologists Memoir 26, 1977: 83-97.
    [32] Cohen K M, Finney S C, Gibbard P L, et al. The ICS international chronostratigraphic chart[J]. Episodes, 2013, 36: 199-204. doi: 10.18814/epiiugs/2013/v36i3/002
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  418
  • HTML全文浏览量:  141
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-31
  • 修回日期:  2021-10-13
  • 刊出日期:  2022-02-01

目录

    /

    返回文章
    返回