留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤矿隐蔽致灾地质体地震绕射波探测方法

赵惊涛 彭苏萍 陈宗南 柳倩男

赵惊涛, 彭苏萍, 陈宗南, 柳倩男. 煤矿隐蔽致灾地质体地震绕射波探测方法[J]. 矿业科学学报, 2022, 7(1): 1-8. doi: 10.19606/j.cnki.jmst.2022.01.001
引用本文: 赵惊涛, 彭苏萍, 陈宗南, 柳倩男. 煤矿隐蔽致灾地质体地震绕射波探测方法[J]. 矿业科学学报, 2022, 7(1): 1-8. doi: 10.19606/j.cnki.jmst.2022.01.001
Zhao Jingtao, Peng Suping, Chen Zongnan, Liu Qiannan. Seismic diffraction detection method for geological hidden disasters in coal mining[J]. Journal of Mining Science and Technology, 2022, 7(1): 1-8. doi: 10.19606/j.cnki.jmst.2022.01.001
Citation: Zhao Jingtao, Peng Suping, Chen Zongnan, Liu Qiannan. Seismic diffraction detection method for geological hidden disasters in coal mining[J]. Journal of Mining Science and Technology, 2022, 7(1): 1-8. doi: 10.19606/j.cnki.jmst.2022.01.001

煤矿隐蔽致灾地质体地震绕射波探测方法

doi: 10.19606/j.cnki.jmst.2022.01.001
基金项目: 

国家自然科学基金优秀青年科学项目 42022031

国家自然科学基金 41874157

中央高校基本科研业务重点领域交叉创新项目 2021JCCXMT02

详细信息
    作者简介:

    赵惊涛(1982—),男,河北邯郸人,教授,博士生导师,主要从事勘探地震、储层预测及地热探测等方面的教学与科研工作。E-mail:diffzjt@163.com

  • 中图分类号: P631.4

Seismic diffraction detection method for geological hidden disasters in coal mining

  • 摘要: 小尺度断层和陷落柱等隐蔽致灾地质体破坏煤层的连续性,易诱发瓦斯突出和采空区突水等事故,严重威胁煤矿生产安全。传统地震勘探方法以反射波为主,对隐蔽致灾地质体分辨率有限。本文提出基于曲波稀疏变换和平面波分解的多参数稀疏优化绕射波分离方法,能够解决在地震波场相交和相切情况下绕射波分离问题,并且分离的绕射波具有波形一致性和完整性。三维数值模拟测试结果表明,该方法能够有效消除强反射波对弱信号的屏蔽作用,分离出完整的绕射波/散射波,提高断层断点和散射点成像精度,其中极性反转成像特征可用于区分不同类型小尺度地质构造。山西阳泉煤业二矿九采扩区实际数据应用证实,本文提出的方法能够有效去除煤层强反射信息屏蔽作用,叠加剖面中绕射波的双曲形态可以质控绕射波分离可靠性。在利用绕射波成像资料解释时,结合反射波场成像结果提供的宏观地质背景,可更好揭示隐蔽致灾地质体,两者相辅相成。绕射波成像对陷落柱的边界形态和内部结构刻画更为清晰,对小尺度断裂的展布规律描述更准确,是一种高分辨率的地震波成像方法,在隐蔽致灾地质体探测上具有很大潜力,一定程度上为我国煤矿安全高效开采提供技术支撑。
  • 图  1  三维叠前炮域多参数稀疏优化绕射波分离流程

    Figure  1.  Flow chart of three-dimensional pre-stack diffraction separation with multi-parameter sparse optimization

    图  2  三维地质模型

    Figure  2.  3D geological model

    图  3  三维模型单炮射线追踪路径

    Figure  3.  3D ray tracing path exciated by one shot

    图  4  模拟数据炮集

    Figure  4.  Synthetic shot gather

    图  5  模拟数据偏移剖面

    Figure  5.  Profile of synthetic migation result

    图  6  绕射和全波场炮集

    Figure  6.  Diffraction and full-wave shot gather

    图  7  绕射和全波场叠加

    Figure  7.  Diffraction and full-wave stacked section

    图  8  绕射和全波场叠前偏移

    Figure  8.  Diffraction and full-wave migration

    图  9  15号煤常规偏移数据方差平面

    Figure  9.  Variance map of conventional migration data of No.15 coal

    图  10  15号煤三维叠前绕射波偏移数据方差平面

    Figure  10.  Variance map of 3d pre-stack diffraction migration data of Coal No.15

  • [1] 韩德馨, 彭苏萍. 我国煤矿高产高效矿井地质保障系统研究回顾及发展构想[J]. 中国煤炭, 2002, 28(2): 5-9. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGME200202000.htm

    Han Dexin, Peng Suping. Review and outlook for mine geological assurance system for China's high-efficiency coal Mines[J]. China Coal, 2002, 28(2): 5-9. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGME200202000.htm
    [2] Marfurt K J, Kirlin R L, Farmer S L, et al. 3-D seismic attributes using a semblance-based Coherence algorithm[J]. Geophysisc, 1998, 63(4): 1150-1165. http://www.researchgate.net/profile/Rodney_Kirlin/publication/249865564_3-D_seismic_attributes_using_a_semblance-based_coherency_algorithm/links/5605787108aea25fce3346bb.pdf
    [3] 李建雄, 崔全章, 魏小东. 地震属性在微断层解释中的应用[J]. 石油地球物理勘探, 2011, 46(6): 925-929.

    Li Jianxiong, Cui Quanzhang, Wei Xiaodong. Application of seismic attributes in micro-fault interpretation[J]. Oil Geophysical Prospecting, 2011, 46(6): 925-929.
    [4] 马晓宇, 王军, 李勇根, 等. 基于蚂蚁追踪的叠前裂缝预测技术[J]. 石油地球物理勘探, 2014, 49(6): 1199-1203.

    Ma Xiaoyu, Wang Jun, Li Yonggen, et al. Prestack fracture prediction based on ant tracking[J]. Oil Geophysical Prospecting, 2014, 49(6): 1199-1203.
    [5] 王赟, 芦俊, 于光明. 能识别煤层中垂直断距小于3 m的断层吗?[J]. 煤炭学报, 2010, 35(4): 629-634. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201004024.htm

    Wang Yun, Lu Jun, Yü Guangming. A normal fault in coal seams with drop height less than 3 m can be identified in seismic exploration?[J]. Journal of China Coal Society, 2010, 35(4): 629-634. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201004024.htm
    [6] Asgedom E G, Gelius L J, Austeng A, et al. A new approach to post-stack diffraction separation[C]//81st Annual International Meeting, SEG, Expanded Abstracts, 2011: 3861-3865.
    [7] Figueiredo J J S D, Oliveira F, Esmi E, et al. Automatic detection and imaging of diffraction points using pattern recognition[J]. Geophysical Prospecting, 2013, 61(S1): 368-379. http://www.onacademic.com/detail/journal_1000037856799610_ccc8.html
    [8] Gelius L J, Tygel M, Takahata A K, et al. High-resolution imaging of diffractions-A window-steered MUSIC approach[J]. Geophysics, 2013, 78 (6): S255- S264. doi: 10.1190/geo2013-0047.1
    [9] 朱生旺, 李佩, 宁俊瑞. 局部倾角滤波和预测反演联合分离绕射波[J]. 地球物理学报, 2013, 56(1): 280-288. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201301030.htm

    Zhu Shengwang, Li Pei, Ning Junrui. Reflection/diffraction separation with a hybrid method of local dip filter and prediction inversion[J]. Chinese Journal of Geophysics, 2013, 56(1): 280-288. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201301030.htm
    [10] 蒋波, 赵金玉, 邬达理, 等. 基于反射波层拉平的绕射波分离与成像方法[J]. 石油物探, 2014, 53(2): 137-148.

    Jiang Bo, Zhao Jinyu, Wu Dali, et al. A method for diffraction wave separation and imaging based on horizon-flattening of reflection waves[J]. Geophysical Prospecting for Petroleum, 2014, 53(2): 137-148.
    [11] 刘太臣, 胡江涛, 王华忠, 等. 奇异值谱分析在绕射波分离及成像中的应用[J]. 石油物探, 2014, 53(1): 46-53.

    Liu Taichen, Hu Jiangtao, Wang Huangzhong, et al. Diffraction wavefield separation and imaging using singular spectrum analysis[J]. Geophysical Prospecting for Petroleum, 2014, 53(1): 46-53.
    [12] Zhao J T, Wang Y F, Yu C X. Diffraction imaging by uniform asymptotic theory and double exponential fitting[J]. Geophysical Prospecting, 2015, 63(2): 338-353.
    [13] Zhao J T, Peng S P, Du W F, et al. Diffraction imaging method by Mahalanobis-based amplitude damping[J]. 2016, 81(6): S399-S408.
    [14] Yu C X, Zhao J T, Wang Y F, et al. Sparse diffraction imaging method using an adaptive reweighting homotopy algorithm[J]. Journal of Geophysics & Engineering, 2017, 14(1): 26-40. http://www.onacademic.com/detail/journal_1000039746189110_9dc3.html
    [15] 孙赞东, 白英哲. 反射波广义拉东谱法绕射波场分离技术[P]: 中国专利: ZL102854529A. 2013.
    [16] Zhang J F, Zhang J J. Diffraction imaging using shot and opening-angle gathers: A prestack time migration approach[J]. Geophysics, 2014, 79(2): S23-S33. http://www.onacademic.com/detail/journal_1000039178262710_9860.html
    [17] 刘斌, 邸志新, 李晓峰, 等. 一种基于局部倾角估计的倾角域绕射波分离与成像方法[J]. 地球物理学进展, 2014, 29(5): 2204-2210.

    Liu Bin, Di Zhixin, Li Xiaofeng, et al. Separation and imaging method of diffraction based on local dip estimation in the dip-angle domain[J]. Progress in Geophysics, 2014, 29(5): 2204-2210.
    [18] 徐辉. 倾角成像道集中反射波和绕射波特征分析及成像质量改善方法研究[J]. 石油物探, 2015, 54(2): 133-141. https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT201502004.htm

    Xu Hui. The analysis of characteristics of reflection and diffraction wave in dip angle gathers and the method for enhancing the imaging quality[J]. Geophysical Prospecting for Petroleum, 2015, 54(2): 133-141. https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT201502004.htm
    [19] Silvestrov I, Baina R, Landa E. Poststack diffraction imaging using reverse-time migration[J]. Geophysical Prospecting, 2016, 64(1): 129-142. doi: 10.1111/1365-2478.12280
  • 加载中
图(10)
计量
  • 文章访问数:  499
  • HTML全文浏览量:  134
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-05
  • 修回日期:  2021-11-02
  • 刊出日期:  2022-02-01

目录

    /

    返回文章
    返回