留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

掺改性煤气化渣水泥新拌浆体与减水剂相容性研究

张明 房奎圳 王栋民 姚广 刘泽 李会泉

张明, 房奎圳, 王栋民, 姚广, 刘泽, 李会泉. 掺改性煤气化渣水泥新拌浆体与减水剂相容性研究[J]. 矿业科学学报, 2021, 6(6): 737-745. doi: 10.19606/j.cnki.jmst.2021.06.013
引用本文: 张明, 房奎圳, 王栋民, 姚广, 刘泽, 李会泉. 掺改性煤气化渣水泥新拌浆体与减水剂相容性研究[J]. 矿业科学学报, 2021, 6(6): 737-745. doi: 10.19606/j.cnki.jmst.2021.06.013
Zhang Ming, Fang Kuizhen, Wang Dongmin, Yao Guang, Liu Ze, Li Huiquan. Study on compatibility of fresh cement paste mixed with modified coal gasification slag and superplasticizer[J]. Journal of Mining Science and Technology, 2021, 6(6): 737-745. doi: 10.19606/j.cnki.jmst.2021.06.013
Citation: Zhang Ming, Fang Kuizhen, Wang Dongmin, Yao Guang, Liu Ze, Li Huiquan. Study on compatibility of fresh cement paste mixed with modified coal gasification slag and superplasticizer[J]. Journal of Mining Science and Technology, 2021, 6(6): 737-745. doi: 10.19606/j.cnki.jmst.2021.06.013

掺改性煤气化渣水泥新拌浆体与减水剂相容性研究

doi: 10.19606/j.cnki.jmst.2021.06.013
基金项目: 

国家“十三五”重点研发计划 2019YFC1904302

详细信息
    作者简介:

    张明(1995—),男,安徽铜陵人,硕士研究生,主要从事无机非金属材料的研究工作。Tel:18628038767,E-mail:18628038767@163.com

    通讯作者:

    王栋民(1965—),男,山西朔州人,教授,主要从事无机非金属材料方面的研究工作。Tel:18611624912,E-mail:wangdongmin2018@163.com

  • 中图分类号: TQ172.4

Study on compatibility of fresh cement paste mixed with modified coal gasification slag and superplasticizer

  • 摘要: 煤气化渣是一种富含铝硅酸盐矿物的煤化工固体废料,机械粉磨与化学激发改性后的煤气化渣可作为复合硅酸盐水泥的活性混合材使用,可以有效减少水泥建材生产制备过程中的碳足迹。为明确掺改性煤气化渣水泥新拌浆体的工作性能,本文通过研究煤气化渣-水泥复合浆体的流动度、ζ-电位和粒径分布,对煤气化渣-水泥二元体系与减水剂相容性进行了评价。结果表明:经二乙醇单异丙醇胺助磨改性后的煤气化渣是一种介孔材料,在掺量不超30 % 的情况下,具有较好的工作性;聚羧酸系减水剂对掺改性煤气化渣水泥新拌浆体的分散性和流动性有利,且表现出修正Bingham流体特征。实验结论对研究煤气化渣-水泥二元体系的工作性能以及与减水剂的相容性有较高的理论参考价值。
  • 图  1  煤气化渣的XRD分析结果

    Figure  1.  XRD analysis of gasification slag

    图  2  煤气化渣的SEM图片

    Figure  2.  SEM analysis of gasification slag

    图  3  水泥及改性煤气化渣粉体粒径分布

    Figure  3.  Particle size distribution of cement and modified coal gasification slag powder

    图  4  不同改性煤气化渣粉体的吸脱附等温曲线

    Figure  4.  Adsorption and desorption isotherms of different modified coal gasification slag powders

    图  5  不同改性煤气化渣粉体的孔径分布曲线

    Figure  5.  Pore size distribution curve of different modified gasification slag powder

    图  6  不同改性煤气化渣的各龄期抗压强度与活性指数

    Figure  6.  Compressive strength and active index of different ages of different modified gasification slags

    图  7  改性煤气化渣掺量对水泥新拌浆体流动度的影响

    Figure  7.  Effect of modified gasification slag content on fluidity of fresh cement paste

    图  8  减水剂掺量对水泥新拌浆体流动度的影响

    Figure  8.  Effect of the amount of superplasticizer on the fluidity of fresh cement paste

    图  9  改性煤气化渣掺量对水泥新拌浆体ζ-电位的影响

    Figure  9.  Effect of modified coal gas slag content on Zeta-potential of cement paste

    图  10  减水剂掺量对水泥新拌浆体ζ-电位的影响

    Figure  10.  Effect of the amount of superplasticizer on Zeta-potential of fresh cement paste

    图  11  改性煤气化渣掺量对水泥新拌浆体粒径分布的影响

    Figure  11.  Effect of modified gasification slag content on particle size distribution of cement paste

    图  12  减水剂掺量对水泥新拌浆体粒径分布的影响

    Figure  12.  Effect of the amount of superplasticizer on particle size distribution of cement paste

    图  13  不同掺量的煤气化渣-水泥浆体流变拟合曲线

    Figure  13.  Rheological fitting curve of gasification slag-cement paste with different contents

    表  1  基准水泥熟料化学分析结果及矿物组成质量分数

    Table  1.   Results of chemical analysis and mineral composition of benchmark cement clinker

    组成 化学成分 矿物成分
    SiO2 Al2O3 Fe2O3 CaO MgO SO3 R2O f-CaO C3S C2S C3A C4AF
    质量分数/% 21.2 4.93 3.98 64.42 1.52 0.96 0.53 0.87 59.53 15.86 6.31 12.10
    下载: 导出CSV

    表  2  煤气化渣化学组成质量分数

    Table  2.   Results of chemical analysis of coal gasification slag

    组成 SiO2 Al2O3 Fe2O3 CaO SO3 TiO2 K2O MgO Na2O P2O5
    质量分数/% 48.398 30.792 8.016 6.147 2.563 1.304 1.043 0.579 0.489 0.179
    下载: 导出CSV

    表  3  流变模型拟合结果

    Table  3.   Fitting results of rheological model

    实验 编号 拟合结果 τ0/Pa η/Pa·s R2
    Cement a τ=3.814 03+0.643 68γ 3.814 03 0.643 68 0.987
    90%C+10%DGS b τ=1.620 04+0.320 47γ+0.001 39γ2 1.620 04 0.320 47 0.999
    70%C+30%DGS c τ=3.664 43+0.305 39γ+0.001 29γ2 3.664 43 0.305 39 0.999
    50%C+50%DGS d τ=4.318 48+0.190 07γ+0.001 24γ2 4.318 48 0.190 07 0.998
    下载: 导出CSV
  • [1] 赵社库. 我国煤化工产业现状及发展建议[J]. 化工管理, 2019, 21: 14-15. doi: 10.3969/j.issn.1008-4800.2019.21.010

    Zhao Sheku. Present situation and development suggestion of coal chemical industry in China[J]. Chemical Enterprise Management, 2019(21): 14-15. doi: 10.3969/j.issn.1008-4800.2019.21.010
    [2] 陈鲁园, 高云艳, 郭旭, 等. 新形势下我国煤炭资源的高效清洁利用的途径分析[J]. 当代化工研究, 2019(7): 35-37. doi: 10.3969/j.issn.1672-8114.2019.07.023

    Chen Luyuan, Gao Yunyan, Guo Xu, et al. Analysis on ways of efficient and clean utilization of coal resources in China under the new situation[J]. Modern Chemical Research, 2019(7): 35-37. doi: 10.3969/j.issn.1672-8114.2019.07.023
    [3] 尹洪峰, 汤云, 任耘, 等. Texaco气化炉炉渣基本特性与应用研究[J]. 煤炭转化, 2009, 32(4): 30-33. doi: 10.3969/j.issn.1004-4248.2009.04.008

    Yin Hongfeng, Tang Yun, Ren Yun, et al. Study on the characteristic and application of gasification slag from texaco gasifier[J]. Coal Conversion, 2009, 32(4): 30-33. doi: 10.3969/j.issn.1004-4248.2009.04.008
    [4] 胡志伟, 刘涛, 满杰, 等. 煤化工行业主要环境污染物来源及污染防治对策[J]. 山东化工, 2016, 45(24): 155-156, 158. doi: 10.3969/j.issn.1008-021X.2016.24.062

    Hu Zhiwei, Liu Tao, Man Jie, et al. The major source of environmental pollutants and countermeasure on control pollution in coal chemical industry[J]. Shandong Chemical Industry, 2016, 45(24): 155-156, 158. doi: 10.3969/j.issn.1008-021X.2016.24.062
    [5] 张永华. 煤化工的废渣处理与利用探讨[J]. 黑龙江科技信息, 2013(27): 148. doi: 10.3969/j.issn.1673-1328.2013.27.138

    Zhang Yonghua. Discussion on treatment and utilization of waste residue in coal chemical industry[J]. Heilongjiang Science and Technology Information, 2013(27): 148. doi: 10.3969/j.issn.1673-1328.2013.27.138
    [6] 蔡丽娟, 顾蔚. 现代煤化工产业发展与环境保护问题分析[J]. 石油化工安全环保技术, 2015, 31(4): 47-49, 59. doi: 10.3969/j.issn.1673-8659.2015.04.013

    Cai Lijuan, Gu Wei. Analysis on the development of modern coal chemical industry and issues about environmental protection[J]. Petrochemical Safety and Environmental Protection Technology, 2015, 31(4): 47-49, 59. doi: 10.3969/j.issn.1673-8659.2015.04.013
    [7] 杨芊, 颜丙磊, 杨帅. 现代煤化工"十三五"中期发展情况分析[J]. 中国煤炭, 2019, 45(7): 77-83, 93. doi: 10.3969/j.issn.1006-530X.2019.07.015

    Yang Qian, Yan Binglei, Yang Shuai. Development situation analysis on modern coal chemical industry in middle period of 13th Five-Year Plan[J]. China Coal, 2019, 45(7): 77-83, 93. doi: 10.3969/j.issn.1006-530X.2019.07.015
    [8] 陈刚. 煤化工残渣中多环芳烃类污染物环境风险评估研究[D]. 沈阳: 东北大学, 2013: 69.
    [9] 张艺翔, 马钊, 冯敏. 气化灰渣应用前景浅析[J]. 化工管理, 2019(21): 13-14. doi: 10.3969/j.issn.1008-4800.2019.21.009

    Zhang Yixiang, Ma Zhao, Feng Min. Analysis on the application prospect of gsification ash[J]. Chemical Enterprise Management, 2019(21): 13-14. doi: 10.3969/j.issn.1008-4800.2019.21.009
    [10] 杨帅, 石立军. 煤气化细渣组分分析及其综合利用探讨[J]. 煤化工, 2013, 41(4): 29-31, 38. doi: 10.3969/j.issn.1005-9598.2013.04.009

    Yang Shuai, Shi Lijun. Composition analysis of the fine slag from coal gasification and its comprehensive utilization[J]. Coal Chemical Industry, 2013, 41(4): 29-31, 38. doi: 10.3969/j.issn.1005-9598.2013.04.009
    [11] 刘海菊, 刘凯, 郭琦. 煤化工过程气化废渣和废碱液的产生及处理技术探讨[J]. 化工管理, 2019(12): 121-122. doi: 10.3969/j.issn.1008-4800.2019.12.080

    Liu Haiju, Liu Kai, Guo Qi. Discussion on generation and treatment technology of gasification waste residue and waste lye in coal chemical process[J]. Chemical Enterprise Management, 2019(12): 121-122. doi: 10.3969/j.issn.1008-4800.2019.12.080
    [12] 吴大刚, 赵代胜, 魏江波. 煤化工过程气化废渣和废碱液的产生及处理技术探讨[J]. 煤化工, 2016, 44(6): 56-59. doi: 10.3969/j.issn.1005-9598.2016.06.015

    Wu Dagang, Zhao Daisheng, Wei Jiangbo. Discussion on generation and treatment technology of gasification slag and alkaline wastewater in the coal chemical industry process[J]. Coal Chemical Industry, 2016, 44(6): 56-59. doi: 10.3969/j.issn.1005-9598.2016.06.015
    [13] Ling S K, Kwan A K H. Adding limestone fines as cementitious paste replacement to lower carbon footprint of SCC[J]. Construction and Building Materials, 2016, 111: 326-336. doi: 10.1016/j.conbuildmat.2016.02.072
    [14] Islam A, Alengaram U J, Jumaat M Z, et al. Engineering properties and carbon footprint of ground granulated blast-furnace slag-palm oil fuel ash-based structural geopolymer concrete[J]. Construction and Building Materials, 2015, 101: 503-521. doi: 10.1016/j.conbuildmat.2015.10.026
    [15] 刘巧玲. 矿物掺合料对水泥基材料性能影响研究[J]. 粉煤灰综合利用, 2019, 32(4): 33-37, 92. doi: 10.3969/j.issn.1005-8249.2019.04.009

    Liu Qiaoling. Study on mineral admixture on the performance of cement-based materials[J]. Fly Ash Comprehensive Utilization, 2019, 32(4): 33-37, 92. doi: 10.3969/j.issn.1005-8249.2019.04.009
    [16] Hanehara S, Yamada K. Interaction between cement and chemical admixture from the point of cement hydration, absorption behaviour of admixture, and paste rheology[J]. Cement and Concrete Research, 1999, 29(8): 1159-1165. doi: 10.1016/S0008-8846(99)00004-6
    [17] 张海姣, 戴思芮, 王栋民. 两性型聚羧酸减水剂与炉渣水泥相容性的研究[J]. 新型建筑材料, 2016, 43(8): 45-48. doi: 10.3969/j.issn.1001-702X.2016.08.013

    Zhang Haijiao, Dai Sirui, Wang Dongmin. The study on compatibilities of boiler slag cement with amphoteric polycarboxylic acid superplasticizer[J]. New Building Materials, 2016, 43(8): 45-48. doi: 10.3969/j.issn.1001-702X.2016.08.013
    [18] 李娟, 王栋民, 张力冉, 等. 两性型聚羧酸减水剂与粉煤灰的相容性研究[J]. 硅酸盐通报, 2015, 34(1): 179-183. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201501033.htm

    Li Juan, Wang Dongmin, Zhang Liran, et al. Compatibility of fly ash with amphoteric polycarboxylic acid-based superplasticizer[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(1): 179-183. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201501033.htm
    [19] Khatib J M, Mangat P S. Influence of superplasticizer and curing on porosity and pore structure of cement paste[J]. Cement and Concrete Composites, 1999, 21(5/6): 431-437. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0958946599000311&originContentFamily=serial&_origin=article&_ts=1433633955&md5=06c956ba3511ffe052264e0804d57975
    [20] 钟世云, 李晋梅, 韩冬冬, 等. 掺黏度改性剂与减水剂水泥浆的zeta电位研究[J]. 建筑材料学报, 2012, 15(6): 735-740. doi: 10.3969/j.issn.1007-9629.2012.06.001

    Zhong Shiyun, Li Jinmei, Han Dongdong, et al. Study on zeta potential of cement pastes with viscosity modifying admixtures and superplasticizers[J]. Journal of Building Materials, 2012, 15(6): 735-740. doi: 10.3969/j.issn.1007-9629.2012.06.001
    [21] 张翠, 王智, 王林龙, 等. 水泥浆体体系ζ-电位探究[J]. 硅酸盐通报, 2013, 32(7): 1264-1268. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201307006.htm

    Zhang Cui, Wang Zhi, Wang Linlong, et al. Study on ζ-potential of cement paste system[J]. Bulletin of the Chinese Ceramic Society, 2013, 32(7): 1264-1268. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201307006.htm
    [22] 任才富, 王栋民, 郑大鹏, 等. 掺超细循环流化床粉煤灰的水泥性能试验研究[J]. 矿业科学学报, 2016, 1(1): 96-102. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKX201601013.htm

    Ren Caifu, Wang Dongmin, Zheng Dapeng, et al. Experimental study on properties of cement mixed with ultrafine circulating fluidized bed fly ash[J]. Journal of Mining Science and Technology, 2016, 1(1): 96-102. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKX201601013.htm
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  11
  • HTML全文浏览量:  7
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-05
  • 修回日期:  2021-05-05
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回