留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

乌达煤田尘土汞溯源分析

李珊 李春辉 梁汉东 曹庆一 高秀龙

李珊, 李春辉, 梁汉东, 曹庆一, 高秀龙. 乌达煤田尘土汞溯源分析[J]. 矿业科学学报, 2021, 6(6): 642-650. doi: 10.19606/j.cnki.jmst.2021.06.002
引用本文: 李珊, 李春辉, 梁汉东, 曹庆一, 高秀龙. 乌达煤田尘土汞溯源分析[J]. 矿业科学学报, 2021, 6(6): 642-650. doi: 10.19606/j.cnki.jmst.2021.06.002
Li Shan, Li Chunhui, Liang Handong, Cao Qingyi, Gao Xiulong. Traceability analysis of dustfall mercury and topsoil mercury in Wuda Coalfield[J]. Journal of Mining Science and Technology, 2021, 6(6): 642-650. doi: 10.19606/j.cnki.jmst.2021.06.002
Citation: Li Shan, Li Chunhui, Liang Handong, Cao Qingyi, Gao Xiulong. Traceability analysis of dustfall mercury and topsoil mercury in Wuda Coalfield[J]. Journal of Mining Science and Technology, 2021, 6(6): 642-650. doi: 10.19606/j.cnki.jmst.2021.06.002

乌达煤田尘土汞溯源分析

doi: 10.19606/j.cnki.jmst.2021.06.002
基金项目: 

煤炭资源与安全开采国家重点实验室自主研究课题 SKLCRSM17ZZ01

国家自然科学基金 41772157

详细信息
    作者简介:

    李珊(1988—),女,河南商丘人,博士研究生,主要从事煤火等方面的研究工作。Tel:13811589421, E-mail:13811589421@126.com

    通讯作者:

    梁汉东(1959—),男,山东东平人, 教授, 博士生导师, 主要从事环境科学与地球化学等方面的研究工作。Tel:13911110581,E-mail:HDL6688@vip.sina.com

  • 中图分类号: P597.2

Traceability analysis of dustfall mercury and topsoil mercury in Wuda Coalfield

  • 摘要: 本文采用多接收电感耦合等离子体质谱仪(MC-ICPMS)分析了乌达煤田9号火区的不同煤层煤、落尘和地表土汞同位素比值,以探讨煤火区地表汞的可能来源煤层。结果表明,煤、落尘和地表土δ202Hg均值分别为-1.98 ‰、-1.30 ‰、-1.26 ‰,皆具明显偏负特征;地表汞Δ199Hg、Δ201Hg值也显示了偏负异常,如落尘分别为-0.13 ‰、-0.11 ‰,地表土分别为-0.11 ‰、-0.10 ‰。对比分析汞同位素组成特征,尘土δ200Hg、δ202Hg、Δ200Hg值均介于9号煤层与10号煤层之间,趋于9号煤且偏负,表明9号火区尘土汞主要来源于9号煤层,而非10号煤层。尘土δ202Hg值较9号煤显示明显偏负现象是煤燃烧和加热过程中动力分馏效应及地质层析效应的综合结果。汞同位素可有效判别煤火区地表汞来源煤层,添加汞同位素分析可有利于提高地下煤火监测效果。
  • 图  1  乌达区位图、采样点示意图和样品

    Figure  1.  Location of Wuda, profile sample sites and samples

    图  2  加入汞与测试汞相关性

    Figure  2.  Relation between Hg added and Hg measured

    图  3  样品的δ202Hg和Δ199Hg关系

    Figure  3.  δ202Hg-Δ199Hg of samples

    图  4  落尘和地表土的δ202Hg值

    Figure  4.  δ202Hg of dustfalls and topsoils

    图  5  样品奇数汞同位素非质量分馏效应

    Figure  5.  Mass-independent fractionation of odd Hg isotopes in samples

    表  1  样品信息

    Table  1.   Information of samples

    样品 颜色 经度 纬度
    沙-1 黄色 106°35′52″ 39°33′05″
    沙-2 黄色 106°35′52″ 39°33′07″
    落尘-1 浅灰色 106°36′39″ 39°31′45″
    落尘-2 黄色 106°37′02″ 39°31′32″
    落尘-3 浅灰色 106°37′27″ 39°31′31″
    落尘-4 浅灰色 106°37′57″ 39°31′31″
    地表土-1 灰黑色 106°36′39″ 39°31′45″
    地表土-2 浅灰色 106°37′02″ 39°31′32″
    地表土-3 灰黑色 106°37′27″ 39°31′31″
    地表土-4 黑色 106°37′57″ 39°31′31″
    下载: 导出CSV

    表  2  样品汞含量与汞同位素组成

    Table  2.   Hg isotope composition and total Hg concentration of samples

    样品 THg δ199Hg δ200Hg δ201Hg δ202Hg Δ199Hg Δ200Hg Δ201Hg
    ng·g-1 2SD 2SD 2SD 2SD 2SD 2SD 2SD
    3177-04 0.69 -0.12 -0.26 -0.47 -0.55 0.02 0.02 -0.05
    3177-10 0.87 -0.18 -0.23 -0.39 -0.51 -0.05 0.02 -0.01
    3177-302 0.84 -0.08 -0.27 -0.43 -0.52 0.05 -0.01 -0.04
    3177-401 0.73 -0.10 -0.29 -0.40 -0.47 0.02 -0.05 -0.04
    3177-403 0.71 -0.11 -0.26 -0.37 -0.50 0.02 0.00 0.01
    3177-405 0.65 -0.15 -0.24 -0.42 -0.45 -0.03 -0.01 -0.08
    BCR482-003 0.88 -1.11 -0.83 -2.01 -1.86 -0.64 0.11 -0.61
    BCR482-302 0.72 -1.06 -0.80 -2.07 -1.82 -0.60 0.11 -0.70
    9号煤均值 180 -0.33 0.01 -0.50 0.02 -0.87 0.05 -1.09 0.07 -0.05 0.01 0.05 0.02 -0.04 0.01
    9号-1 177 -0.32 -0.48 -0.83 -1.04 -0.06 0.04 -0.05
    9号-2 183 -0.33 -0.51 -0.89 -1.13 -0.05 0.06 -0.04
    9号-3 179 -0.33 -0.51 -0.88 -1.11 -0.05 0.05 -0.05
    10号煤均值 210 -0.77 0.01 -1.35 0.01 -2.20 0.02 -2.86 0.02 -0.05 0.01 0.08 0.02 -0.05 0.01
    10号-1 214 -0.77 -1.36 -2.20 -2.86 -0.05 0.08 -0.05
    10号-2 207 -0.77 -1.35 -2.21 -2.87 -0.05 0.09 -0.05
    10号-3 208 -0.76 -1.35 -2.19 -2.85 -0.04 0.08 -0.04
    沙均值 74 -0.49 -0.81 -1.38 -1.78 -0.04 0.08 -0.04
    沙-1 67 -0.49 -0.81 -1.38 -1.79 -0.04 0.08 -0.04
    沙-2 81 -0.49 -0.81 -1.38 -1.78 -0.04 0.08 -0.04
    落尘均值 642 -0.45 0.03 -0.59 0.03 -1.08 0.05 -1.30 0.07 -0.13 0.02 0.06 0.01 -0.11 0.01
    落尘-1 844 -0.43 -0.57 -1.05 -1.25 -0.12 0.06 -0.11
    落尘-2 624 -0.45 -0.59 -1.07 -1.28 -0.12 0.05 -0.10
    落尘-3 512 -0.45 -0.59 -1.08 -1.30 -0.12 0.06 -0.11
    落尘-4 588 -0.48 -0.61 -1.13 -1.35 -0.14 0.06 -0.11
    地表土均值 468 -0.43 0.03 -0.58 0.03 -1.05 0.03 -1.26 0.07 -0.11 0.02 0.06 0.01 -0.10 0.02
    地表土-1 619 -0.41 -0.55 -1.03 -1.22 -0.10 0.06 -0.11
    地表土-2 418 -0.42 -0.57 -1.03 -1.24 -0.11 0.05 -0.10
    地表土-3 427 -0.44 -0.58 -1.05 -1.28 -0.12 0.06 -0.09
    地表土-4 407 -0.45 -0.60 -1.07 -1.31 -0.12 0.06 -0.09
    下载: 导出CSV
  • [1] Fitzgerald W F, Engstrom D R, Mason R P, et al. The case for atmospheric mercury contamination in remote areas[J]. Environmental Science & Technology, 1998, 32: 1-7. http://www.unites.uqam.ca/gmf/globalmercuryforum/files/articles/review/General%20Review%20Fitzgerald%20Atmospheric%20Hg%20remote%20areas.pdf
    [2] Bergquist B A, Blum J D. Mass-dependent and-independent fractionation of Hg isotopes by photoreduction in aquatic systems[J]. Science, 2007, 318(5849): 417-420. doi: 10.1126/science.1148050
    [3] O'Keefe J M K, Henke K R, Hower J C, et al. CO2, CO, and Hg emissions from the Truman Shepherd and Ruth Mullins coal fires, eastern Kentucky, USA[J]. Science of the Total Environment, 2010, 408(7): 1628-1633. doi: 10.1016/j.scitotenv.2009.12.005
    [4] Liang Y C, Liang H D, Zhu S Q. Mercury emission from coal seam fire at Wuda, Inner Mongolia, China[J]. Atmospheric Environment, 2014, 83: 176-184. doi: 10.1016/j.atmosenv.2013.09.001
    [5] Shan B, Wang G, Cao F, et al. Mercury emission from underground coal fires in the mining goaf of the Wuda Coalfield, China[J]. Ecotoxicology and Environmental Safety, 2019, 182: 109409. doi: 10.1016/j.ecoenv.2019.109409
    [6] Engle M A, Radke L F, Heffern E L, et al. Gas emissions, minerals, and tars associated with three coal fires, Powder River Basin, USA[J]. Science of the Total Environment, 2012, 420: 146-159. doi: 10.1016/j.scitotenv.2012.01.037
    [7] Hong X P, Liang H D, Lv S, et al. Mercury emissions from dynamic monitoring holes of underground coal fires in the Wuda Coalfield, Inner Mongolia, China[J]. International Journal of Coal Geology, 2017, 181: 78-86. doi: 10.1016/j.coal.2017.08.013
    [8] Blum J D, Bergquist B A. Reporting of variations in the natural isotopic composition of mercury[J]. Analytical and Bioanalytical Chemistry, 2007, 388(2): 353-359. doi: 10.1007/s00216-007-1236-9
    [9] Blum J D. Applications of stable mercury isotopes to biogeochemistry[M]//Baskaran M. Hanbook of Environmental Isotope Geochemistry. Berlin, Heidelberg: Springer, 2012, 229-245.
    [10] Yin R S, Feng X B, Li X D, et al. Trends and advances in mercury stable isotopes as a geochemical tracer[J]. Trends in Environmental Analytical Chemistry, 2014, 2: 1-10. doi: 10.1016/j.teac.2014.03.001
    [11] Sun R Y, Sonke J E, Heimbürger L E, et al. Mercury stable isotope signatures of world coal deposits and historical coal combustion emissions[J]. Environmental Science & Technology, 2014, 48(13): 7660-7668. http://www.onacademic.com/detail/journal_1000036655040910_fc5e.html
    [12] Yin R S, Feng X B, Chen J B. Mercury stable isotopic compositions in coals from major coal producing fields in China and their geochemical and environmental implications[J]. Environmental Science & Technology, 2014, 48(10): 5565-5574. http://www.ncbi.nlm.nih.gov/pubmed/24742360/
    [13] 冯新斌, 尹润生, 俞奔, 等. 汞同位素地球化学概述[J]. 地学前缘, 2015, 22(5): 124-135. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201505013.htm

    Feng Xinbin, Yin Runsheng, Yu Ben, et al. A review of Hg isotope geochemistry[J]. Earth Science Frontiers, 2015, 22(5): 124-135 https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201505013.htm
    [14] Gehrke G E, Blum J D, Marvin-Dipasquale M. Sources of mercury to San Francisco Bay surface sediment as revealed by mercury stable isotopes[J]. Geochimica et Cosmochimica Acta, 2011, 75(3): 691-705. doi: 10.1016/j.gca.2010.11.012
    [15] Feng X B, Yin R S, Yu B, et al. Mercury isotope variations in surface soils in different contaminated areas in Guizhou Province, China[J]. Chinese Science Bulletin, 2013, 58(2): 249-255. doi: 10.1007/s11434-012-5488-1
    [16] Sun G Y, Feng X B, Yang C M, et al. Levels, sources, isotope signatures, and health risks of mercury in street dust across China[J]. Journal of Hazardous Materials, 2020, 392: 122276. doi: 10.1016/j.jhazmat.2020.122276
    [17] Liang Y C, Liang H D, Zhu S Q. Mercury emission from spontaneously ignited coal gangue hill in Wuda coalfield, Inner Mongolia, China[J]. Fuel, 2016, 182: 525-530. doi: 10.1016/j.fuel.2016.05.092
    [18] Li C H, Liang H D, Chen Y, et al. Distribution of surface soil mercury of Wuda old mining area, Inner Mongolia, China[J]. Human and Ecological Risk Assessment: an International Journal, 2018, 24(5): 1421-1439. doi: 10.1080/10807039.2017.1413536
    [19] Liang Y C, Zhu S Q, Liang H D. Mercury enrichment in coal fire sponge in Wuda coalfield, Inner Mongolia of China[J]. International Journal of Coal Geology, 2018, 192: 51-55. doi: 10.1016/j.coal.2018.03.006
    [20] 李峰, 梁汉东, 赵小平, 等. 基于ASTER影像的乌达火区遥感监测研究[J]. 煤矿安全, 2016, 47(11): 15-18. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201611005.htm

    Li Feng, Liang Handong, Zhao Xiaoping, et al. Remote sensing monitoring research on coal fire in Wuda mine by ASTER images[J]. Safety in Coal Mines, 2016, 47(11): 15-18. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201611005.htm
    [21] 中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990: 87-90.
    [22] Kamunda C, Mathuthu M, Madhuku M. Health risk assessment of heavy metals in soils from Witwatersrand gold mining basin, south Africa[J]. International Journal of Environmental Research and Public Health, 2016, 13(7): 663. doi: 10.3390/ijerph13070663
    [23] McCarthy D, Edwards G C, Gustin M S, et al. An innovative approach to bioremediation of mercury contaminated soils from industrial mining operations[J]. Chemosphere, 2017, 184: 694-699. doi: 10.1016/j.chemosphere.2017.06.051
    [24] 杨净, 王宁. 夹皮沟金矿开采区土壤重金属污染潜在生态风险评价[J]. 农业环境科学学报, 2013, 32(3): 595-600. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201303031.htm

    Yang Jing, Wang Ning. Assessment of potential ecological risk of heavy metals in soils from Jia-pi-Gou gold mine area, China[J]. Journal of Agro-Environment Science, 2013, 32(3): 595-600. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201303031.htm
    [25] Dai S F, Ren D Y, Tang Y G, et al. Distribution, isotopic variation and origin of sulfur in coals in the Wuda coalfield, Inner Mongolia, China[J]. International Journal of Coal Geology, 2002, 51(4): 237-250. doi: 10.1016/S0166-5162(02)00098-8
    [26] Sherman L S, Blum J D, Johnson K P, et al. Mass-independent fractionation of mercury isotopes in Arctic snow driven by sunlight[J]. Nature Geoscience, 2010, 3: 173-177. doi: 10.1038/ngeo758
    [27] Sherman L S, Blum J D, Douglas T A, et al. Frost flowers growing in the Arctic ocean-atmosphere-sea ice-snow interface: 2. Mercury exchange between the atmosphere, snow, and frost flowers[J]. Journal of Geophysical Research: Atmospheres, 2012 117: 188-194. doi: 10.1029/2011JD016186/abstract
    [28] Chen J B, Hintelmann H, Feng X B, et al. Unusual fractionation of both odd and even mercury isotopes in precipitation from Peterborough, ON, Canada[J]. Geochimica et Cosmochimica Acta, 2012, 90: 33-46. doi: 10.1016/j.gca.2012.05.005
    [29] Zheng W, Foucher D, Hintelmann H. Mercury isotope fractionation during volatilization of Hg(0)from solution into the gas phase[J]. Journal of Analytical Atomic Spectrometry, 2007, 22(9): 1097-1104. doi: 10.1039/b705677j
    [30] Ghosh S, Schauble E A, Lacrampe Couloume G, et al. Estimation of nuclear volume dependent fractionation of mercury isotopes in equilibrium liquid-vapor evaporation experiments[J]. Chemical Geology, 2013, 336: 5-12. doi: 10.1016/j.chemgeo.2012.01.008
    [31] Rose C H, Ghosh S, Blum J D, et al. Effects of ultraviolet radiation on mercury isotope fractionation during photo-reduction for inorganic and organic mercury species[J]. Chemical Geology, 2015, 405: 102-111. doi: 10.1016/j.chemgeo.2015.02.025
    [32] Estrade N, Carignan J, Sonke J E, et al. Mercury isotope fractionation during liquid-vapor evaporation experiments[J]. Geochimica et Cosmochimica Acta, 2009, 73(10): 2693-2711. http://www.onacademic.com/detail/journal_1000035388014010_042e.html
    [33] Schauble E A. Role of nuclear volume in driving equilibrium stable isotope fractionation of mercury, thallium, and other very heavy elements[J]. Geochimica et Cosmochimica Acta, 2007, 71: 2170-2189. http://www.onacademic.com/detail/journal_1000035386806210_2781.html
    [34] Wiederhold J G, Cramer C J, Daniel K, et al. Equilibrium mercury isotope fractionation between dissolved Hg(Ⅱ)species and thiol-bound Hg[J]. Environmental Science & Technology, 2010, 44(11): 4191-4197. http://static.msi.umn.edu/rreports/2010/95.pdf
    [35] Sarzanini C, Bruzzoniti M C, Hajós P. Effect of stationary phase hydrophobicity and mobile phase composition on the separation of carboxylic acids in ion chromatography[J]. Journal of Chromatography A, 2000, 867(1/2): 131-142. http://www.researchgate.net/profile/Corrado_Sarzanini/publication/12644079_Effect_of_stationary_phase_hydrophobicity_and_mobile_phase_composition_on_the_separation_of_carboxylic_acids_in_ion_chromatography/links/00b4952a03d11d6230000000.pdf
    [36] Vandenboer T C, Markovic M Z, Petroff A, et al. Ion chromatographic separation and quantitation of alkyl methylamines and ethylamines in atmospheric gas and particulate matter using preconcentration and suppressed conductivity detection[J]. Journal of Chromatography A, 2012, 1252: 74-83. http://europepmc.org/abstract/MED/22784696
    [37] Zhang L, Zhu L W, Yi Z L, et al. Source rocks of the Fuyu-Yang dachengzi oil-layer in the Chaoyanggou oilfield, Songliao basin[J]. Advanced Materials Research, 2014, 962/963/964/965: 630-635.
    [38] Li C H, Liang H D, Liang M, et al. Mercury emissions flux from various land uses in old mining area, Inner Mongolia, China[J]. Journal of Geochemical Exploration, 2018, 192: 132-141. http://www.onacademic.com/detail/journal_1000040425287610_3f80.html
    [39] Li C H, Liang H D, Liang M, et al. Soil surface Hg emission flux in coalfield in Wuda, Inner Mongolia, China[J]. Environmental Science and Pollution Research, 2018, 25(17): 16652-16663. http://www.onacademic.com/detail/journal_1000040261058010_5d84.html
    [40] Zheng W, Hintelmann H. Nuclear field shift effect in isotope fractionation of mercury during abiotic reduction in the absence of light[J]. Journal of Physical Chemistry A, 2010, 114(12): 4238-4245. http://www.onacademic.com/detail/journal_1000036577067810_9178.html
    [41] Sonke J E. A global model of mass independent mercury stable isotope fractionation[J]. Geochimica et Cosmochimica Acta, 2011, 75: 4577-4590. http://www.onacademic.com/detail/journal_1000035386351910_9fd0.html
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  417
  • HTML全文浏览量:  198
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-06
  • 修回日期:  2020-11-30
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回