留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤系沉积岩多重分形维数计算及影响因素分析

张娜 寻兴建 王帅栋 张浩宇

张娜, 寻兴建, 王帅栋, 张浩宇. 煤系沉积岩多重分形维数计算及影响因素分析[J]. 矿业科学学报, 2021, 6(5): 623-632. doi: 10.19606/j.cnki.jmst.2021.05.012
引用本文: 张娜, 寻兴建, 王帅栋, 张浩宇. 煤系沉积岩多重分形维数计算及影响因素分析[J]. 矿业科学学报, 2021, 6(5): 623-632. doi: 10.19606/j.cnki.jmst.2021.05.012
Zhang Na, Xun Xingjian, Wang Shuaidong, Zhang Haoyu. Calculation of multi-fractal dimension of coal measure sedimentary rock and analysis of influencing factors[J]. Journal of Mining Science and Technology, 2021, 6(5): 623-632. doi: 10.19606/j.cnki.jmst.2021.05.012
Citation: Zhang Na, Xun Xingjian, Wang Shuaidong, Zhang Haoyu. Calculation of multi-fractal dimension of coal measure sedimentary rock and analysis of influencing factors[J]. Journal of Mining Science and Technology, 2021, 6(5): 623-632. doi: 10.19606/j.cnki.jmst.2021.05.012

煤系沉积岩多重分形维数计算及影响因素分析

doi: 10.19606/j.cnki.jmst.2021.05.012
基金项目: 

国家自然科学基金青年科学基金 41502264

中央高校基本科研业务费专项基金 2020YJSSB07

中国矿业大学(北京)大学生创新训练 C202006968

详细信息
    作者简介:

    张娜(1978—),女,河南灵宝人,博士,副研究员,博士生导师,主要从事流体与岩石相互作用等方面的研究工作。Tel:010-62339820-404,E-mail:zhangn@cumtb.edu.cn

    通讯作者:

    王帅栋(1995—),男,河南灵宝人,博士研究生,主要从事流体与岩石相互作用等方面的研究工作。Tel:15600016794,E-mail:413445570@qq.com

  • 中图分类号: TU458

Calculation of multi-fractal dimension of coal measure sedimentary rock and analysis of influencing factors

  • 摘要: 为表征煤系沉积岩的孔隙结构与分形特征,选取中侏罗统页岩、泥岩和砂岩3种典型沉积岩进行了X射线衍射(XRD)分析、核磁共振(NMR)实验,运用分形理论讨论了NMR分形维数与矿物组成、物性参数之间的相互关系。结果表明:①基于弛豫时间截止值T2C,可将页岩、泥岩NMR分形维数划分为吸附孔隙分形维数DA(T2≤3 ms)和渗流孔隙分形维数DS(T2>3 ms)。②储层物性方面,NMR分形维数Df与孔隙率、渗透率、储层质量指数呈良好的线性负相关关系,说明NMR分形维数能够作为衡量岩石物性的重要指标。③矿物成分方面,石英、长石含量与分形维数Df呈弱负相关关系,黏土矿物由于受到沉积环境、理化性质和矿物本身含量等多因素作用,对分形维数的影响差异较为显著。
  • 图  1  核磁共振与岩样饱和实验设备

    Figure  1.  Experimental equipment for nuclear magnetic resonance and sample saturation

    图  2  岩石样本的T2Sv的双对数关系

    Figure  2.  Double logarithmic relationship between T2 and Sv of rock sample

    图  3  孔隙率、渗透率、RQI与Df之间的相关性

    Figure  3.  Correlation between porosity, permeability, RQI and Df

    图  4  脆性矿物含量与分形维数相关关系

    Figure  4.  Correlation between brittle minerals content and fractal dimension

    图  5  黏土矿物含量与分形维数相关关系

    Figure  5.  Correlation between clay minerals content and fractal dimension

    表  1  岩石样品的基本物理参数

    Table  1.   Basic geophysical descriptions of the rock samples

    样品编号 岩性 干重/g 岩样描述
    SH-1 页岩 92.59   灰色,结构密实,周身光滑,表面有少量微裂纹和纹理
    SH-2 页岩 76.72   灰黑相间,表面光滑,纹理层次分明
    MS-1 泥岩 84.47   灰绿色,结构密实,表面混有少量白色矿物
    MS-2 泥岩 72.61   灰色,结构密实,表面有少量微裂纹
    SS-1 砂岩 75.83   灰色,颗粒均匀分布,表面较粗糙
    下载: 导出CSV

    表  2  岩石样品的矿物成分及含量

    Table  2.   Mineralogical compositions of the investigated rock samples

    样品编号 全岩矿物成分含量/% 黏土矿物组成/%
    黏土矿物 石英 钾长石 斜长石 菱铁矿 高岭石 绿泥石 伊利石 伊/蒙混层
    SH-1 34 24 3 6 33 55 23 11 11
    SH-2 43 41 4 12 49 20 9 22
    MS-1 42 39 4 12 3 45 26 10 19
    MS-2 44 41 3 12 44 25 12 19
    SS-1 12 54 11 17 89 6 3 2
    下载: 导出CSV

    表  3  NMR分形维数计算结果

    Table  3.   NMR fractal dimension calculation result

    样品编号 孔隙率φ /% 渗透率K /mD RQI Df Df相关系数 DA(T2 ≤3 ms) DA相关系数 DS(T2 >3 ms) DS相关系数
    SH-1 3.20 0.000 57 0.004 2 2.775 0.316 2.031 0.952 2.905 0.821
    SH-2 7.15 0.068 60 0.030 9 2.736 0.375 2.016 0.946 2.907 0.861
    MS-1 7.33 0.004 54 0.007 8 2.577 0.455 2.020 0.936 2.758 0.746
    MS-2 7.64 0.006 85 0.009 4 2.668 0.367 2.032 0.922 2.827 0.696
    SS-1 14.25 49.588 22 0.589 9 2.564 0.628
    下载: 导出CSV
  • [1] Guo X B, Huang Z L, Zhao L B, et al. Pore structure and multi-fractal analysis of tight sandstone using MIP, NMR and NMRC methods: a case study from the Kuqa depression, China[J]. Journal of Petroleum Science and Engineering, 2019, 178: 544-558. doi: 10.1016/j.petrol.2019.03.069
    [2] Wang J, Cao Y C, Liu K Y, et al. Fractal characteristics of the pore structures of fine-grained, mixed sedimentary rocks from the Jimsar Sag, Junggar Basin: Implications for lacustrine tight oil accumulations[J]. Journal of Petroleum Science and Engineering, 2019, 182: 106363. doi: 10.1016/j.petrol.2019.106363
    [3] Gao H, Li H Z. Determination of movable fluid percentage and movable fluid porosity in ultra-low permeability sandstone using nuclear magnetic resonance(NMR)technique[J]. Journal of Petroleum Science and Engineering, 2015, 133: 258-267. doi: 10.1016/j.petrol.2015.06.017
    [4] Song Z Z, Liu G D, Yang W W, et al. Multi-fractal distribution analysis for pore structure characterization of tight sandstone—A case study of the Upper Paleozoic tight formations in the Longdong District, Ordos Basin[J]. Marine and Petroleum Geology, 2018, 92: 842-854. doi: 10.1016/j.marpetgeo.2017.12.018
    [5] 张娜, 乔凤超, 张博, 等. 深部煤系沉积岩孔隙结构特征压汞试验研究[J]. 煤炭科学技术, 2016, 44(10): 155-160. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201610029.htm

    Zhang Na, Qiao Fengchao, Zhang Bo, et al. Experimental study on pore structure features of sedimentary rocks in deep coal measures by mercury intrusion porosimetry[J]. Coal Science and Technology, 2016, 44(10): 155-160. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201610029.htm
    [6] 张天付, 谢淑云, 鲍征宇, 等. 基于高分辨率CT的孔隙型白云岩储层孔隙系统分形与多重分形研究[J]. 地质科技情报, 2016, 35(6): 55-62. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201606009.htm

    Zhang Tianfu, Xie Shuyun, Bao Zhengyu, et al. Fractal and multifractal research on pore system for porous dolomite reservoirs based on high-resolution CT[J]. Geological Science and Technology Information, 2016, 35(6): 55-62. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201606009.htm
    [7] 曹涛涛, 宋之光, 刘光祥, 等. 氮气吸附法—压汞法分析页岩孔隙、分形特征及其影响因素[J]. 油气地质与采收率, 2016, 23(2): 1-8. doi: 10.3969/j.issn.1009-9603.2016.02.001

    Cao Taotao, Song Zhiguang, Liu Guangxiang, et al. Characteristics of shale pores, fractal dimension and their controlling factors determined by nitrogen adsorption and mercury injection methods[J]. Petroleum Geology and Recovery Efficiency, 2016, 23(2): 1-8. doi: 10.3969/j.issn.1009-9603.2016.02.001
    [8] Zhang K X, Lai J, Bai G P, et al. Comparison of fractal models using NMR and CT analysis in low permeability sandstones[J]. Marine and Petroleum Geology, 2020, 112: 104069. doi: 10.1016/j.marpetgeo.2019.104069
    [9] Wu B H, Xie R H, Wang X Y, et al. Characterization of pore structure of tight sandstone reservoirs based on fractal analysis of NMR echo data[J]. Journal of Natural Gas Science and Engineering, 2020, 81: 103483. doi: 10.1016/j.jngse.2020.103483
    [10] Wang F Y, Yang K, Cai J C. Fractal characterization of tight oil reservoir pore structure using nuclear magnetic resonance and mercury intrusion porosimetry[J]. Fractals, 2018, 26(2): 1840017. doi: 10.1142/S0218348X18400170
    [11] Zhou L, Kang Z H. Fractal characterization of pores in shales using NMR: a case study from the Lower Cambrian Niutitang Formation in the Middle Yangtze Platform, Southwest China[J]. Journal of Natural Gas Science and Engineering, 2016, 35: 860-872. doi: 10.1016/j.jngse.2016.09.030
    [12] Fan X Q, Wang G W, Li Y F, et al. Pore structure evaluation of tight reservoirs in the mixed siliciclastic-carbonate sediments using fractal analysis of NMR experiments and logs[J]. Marine and Petroleum Geology, 2019, 109: 484-493. doi: 10.1016/j.marpetgeo.2019.06.038
    [13] Zhao Y X, Zhu G P, Dong Y H, et al. Comparison of low-field NMR and microfocus X-ray computed tomography in fractal characterization of pores in artificial cores[J]. Fuel, 2017, 210: 217-226. doi: 10.1016/j.fuel.2017.08.068
    [14] Kassab M A, Hassanain I M, Salem A M. Petrography, diagenesis and reservoir characteristics of the Pre-Cenomanian sandstone, Sheikh Attia area, East Central Sinai, Egypt[J]. Journal of African Earth Sciences, 2014, 96: 122-138. doi: 10.1016/j.jafrearsci.2014.03.021
    [15] Lai J, Wang G W, Fan Z Y, et al. Insight into the pore structure of tight sandstones using NMR and HPMI measurements[J]. Energy & Fuels, 2016, 30(12): 10200-10214. doi: 10.1021/acs.energyfuels.6b01982
    [16] Li P, Zheng M, Bi H, et al. Pore throat structure and fractal characteristics of tight oil sandstone: a case study in the Ordos Basin, China[J]. Journal of Petroleum Science and Engineering, 2017, 149: 665-674. doi: 10.1016/j.petrol.2016.11.015
    [17] Cai J C, Yu B M, Zou M Q, et al. Fractal analysis of invasion depth of extraneous fluids in porous media[J]. Chemical Engineering Science, 2010, 65(18): 5178-5186. doi: 10.1016/j.ces.2010.06.013
    [18] Giri A, Tarafdar S, Gouze P, et al. Fractal pore structure of sedimentary rocks: Simulation in 2-d using a relaxed bidisperse ballistic deposition model[J]. Journal of Applied Geophysics, 2012, 87: 40-45. doi: 10.1016/j.jappgeo.2012.09.002
    [19] Lai J, Wang G W. Fractal analysis of tight gas sandstones using high-pressure mercury intrusion techniques[J]. Journal of Natural Gas Science and Engineering, 2015, 24: 185-196. doi: 10.1016/j.jngse.2015.03.027
    [20] 马新仿, 张士诚, 郎兆新. 分形理论在岩石孔隙结构研究中的应用[J]. 岩石力学与工程学报, 2003, 22(S1): 2164-2167. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2003S1008.htm

    Ma Xinfang, Zhang Shicheng, Lang Zhaoxin. Application of fractal theory to pore structure research[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(S1): 2164-2167. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2003S1008.htm
    [21] 屈世显, 张建华. 分形与分维及在地球物理学中的应用[J]. 西安石油大学学报: 自然科学版, 1991, 6(2): 8-13. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY199102001.htm

    Qu Shixian, Zhang Jianhua. Fractal and fractal dimension and their application in geophysics[J]. Journal of Xi'an Shiyou University, 1991, 6(2): 8-13. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY199102001.htm
    [22] 刘世明, 唐书恒, 霍婷, 等. 柴达木盆地东缘上石炭统泥页岩孔隙结构及分形特征[J]. 天然气地球科学, 2020, 31(8): 1069-1081. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202008003.htm

    Liu Shiming, Tang Shuheng, Huo Ting, et al. Pore structure and fractal characteristics of the Upper Carboniferous shale, eastern Qaidam Basin[J]. Natural Gas Geoscience, 2020, 31(8): 1069-1081. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202008003.htm
    [23] 张超谟, 陈振标, 张占松, 等. 基于核磁共振T2谱分布的储层岩石孔隙分形结构研究[J]. 石油天然气学报, 2007, 29(4): 80-86, 166. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX200704015.htm

    Zhang Chaomo, Chen Zhenbiao, Zhang Zhansong, et al. Fractal characteristics of reservoir rock pore structure based on NMR T2 distribution[J]. Journal of Oil and Gas Technology, 2007, 29(4): 80-86, 166. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX200704015.htm
    [24] 杨正明, 苗盛, 刘先贵, 等. 特低渗透油藏可动流体百分数参数及其应用[J]. 西安石油大学学报: 自然科学版, 2007, 22(2): 96-99, 178. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY200702024.htm

    Yang Zhengming, Miao Sheng, Liu Xiangui, et al. Percentage parameter of the movable fluid in ultra-low permeability reservoir and its application[J]. Journal of Xi'an Shiyou University: Natural Science Edition, 2007, 22(2): 96-99, 178. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY200702024.htm
    [25] 宁传祥, 姜振学, 苏思远, 等. 泥页岩核磁共振T2谱换算孔隙半径方法[J]. 科学技术与工程, 2016, 16(27): 14-19. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201627003.htm

    Ning Chuanxiang, Jiang Zhenxue, Su Siyuan, et al. Method for calculating pore radius distribution in shale reservoirs from NMR T2 spectra[J]. Science Technology and Engineering, 2016, 16(27): 14-19. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201627003.htm
    [26] 宋明会. 核磁共振录井可动流体T2截止值确定方法[J]. 录井工程, 2007, 18(3): 5-8, 74. https://www.cnki.com.cn/Article/CJFDTOTAL-LJGZ200703001.htm

    Song Minghui. Discussion on determining method for movable fluid cutoff t2[J]. Mud Logging Engineering, 2007, 18(3): 5-8, 74. https://www.cnki.com.cn/Article/CJFDTOTAL-LJGZ200703001.htm
    [27] Lai J, Wang G W, Wang Z Y, et al. A review on pore structure characterization in tight sandstones[J]. Earth-Science Reviews, 2018, 177: 436-457. http://www.researchgate.net/profile/Jin_Lai/publication/321711035_A_review_on_pore_structure_characterization_in_tight_sandstones/links/5ba9138ba6fdccd3cb6f8327/A-review-on-pore-structure-characterization-in-tight-sandstones.pdf
    [28] 方坤, 刘治成, 张律, 等. 四川新场气田须家河组陆相页岩孔隙分形维数及其甲烷吸附效应[J]. 能源与环保, 2019, 41(7): 86-94. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZMT201907020.htm

    Fang Kun, Liu Zhicheng, Zhang Lü, et al. Pore fractal dimension and methane adsorption of continental shale of Xujiahe in Xinchang gas field, Sichuan Basin[J]. China Energy and Environmental Protection, 2019, 41(7): 86-94. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZMT201907020.htm
    [29] 陈磊, 姜振学, 温暖, 等. 页岩纳米孔隙分形特征及其对甲烷吸附性能的影响[J]. 科学技术与工程, 2017, 17(2): 31-39. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201702006.htm

    Chen Lei, Jiang Zhenxue, Wen Nuan, et al. Fractal characteristics of nanopores and their effect on methane adsorption capacity in shales[J]. Science Technology and Engineering, 2017, 17(2): 31-39. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201702006.htm
    [30] Ji W M, Song Y, Jiang Z X, et al. Fractal characteristics of nano-pores in the Lower Silurian Longmaxi shales from the Upper Yangtze Platform, South China[J]. Marine and Petroleum Geology, 2016, 78: 88-98. http://www.sciencedirect.com/science/article/pii/S0264817216302781
    [31] Li J Q, Wang S Y, Lu S F, et al. Microdistribution and mobility of water in gas shale: a theoretical and experimental study[J]. Marine and Petroleum Geology, 2019, 102: 496-507.
    [32] 赵岳, 王延斌, 钟大康, 等. 致密砂岩储集层成岩演化与致密油充注成藏关系研究——以鄂尔多斯盆地延长组为例[J]. 矿业科学学报, 2018, 3(2): 106-118. http://kykxxb.cumtb.edu.cn/article/id/128

    Zhao Yue, Wang Yanbin, Zhong Dakang, et al. Study on the relationship between tight sandstone reservoir diagenetic evolution and hydrocarbon reservoirs filling: A case form the Yanchang Formation, Ordos Basin[J]. Journal of Mining Science and Technology, 2018, 3(2): 106-3. http://kykxxb.cumtb.edu.cn/article/id/128
    [33] 张龙海, 周灿灿, 刘国强, 等. 不同类型低孔低渗储集层的成因、物性差异及测井评价对策[J]. 石油勘探与开发, 2007, 34(6): 702-710. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200706013.htm

    Zhang Longhai, Zhou Cancan, Liu Guoqiang, et al. Origin and property differences of various types of low-porosity and low-permeability reservoirs and well logging evaluation strategies[J]. Petroleum Exploration and Development, 2007, 34(6): 702-710. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200706013.htm
    [34] Ji L M, Zhang T W, Milliken K L, et al. Experimental investigation of main controls to methane adsorption in clay-rich rocks[J]. Applied Geochemistry, 2012, 27(12): 2533-2545. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ201301010007.htm
    [35] 邵龙义, 张亮, 张敬凯, 等. 河南省石炭-二叠系海陆过渡相页岩气成藏地质条件[J]. 矿业科学学报, 2016, 1(3): 209-221. http://kykxxb.cumtb.edu.cn/article/id/29

    Shao Longyi, Zhang Liang, Zhang Jingkai, et al. Accumulation conditions of shale gas in transitional marine-continental coal measures of the Carboniferous-Permian in Henan Province[J]. Journal of Mining Science and Technology, 2016, 1(3): 209-221. http://kykxxb.cumtb.edu.cn/article/id/29
    [36] 梁志凯, 李卓, 姜振学, 等. 基于NMR和SEM技术研究陆相页岩孔隙结构与分形维数特征: 以松辽盆地长岭断陷沙河子组页岩为例[J]. 地球科学与环境学报, 2020, 42(3): 313-328. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202003005.htm

    Liang Zhikai, Li Zhuo, Jiang Zhenxue, et al. Characteristics of pore structure and fractal dimension in continental shale based on NMR experiments and SEM image analyses—A case study of shahezi formation shale in Changling fault depression of Songliao basin, China[J]. Journal of Earth Sciences and Environment, 2020, 42(3): 313-328. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202003005.htm
    [37] 张鹏, 黄宇琪, 张金川, 等. 黔西北地区龙潭组海陆过渡相泥页岩孔隙分形特征[J]. 煤炭学报, 2018, 43(6): 1580-1588. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201806010.htm

    Zhang Peng, Huang Yuqi, Zhang Jinchuan, et al. Fractal characteristics of the Longtan formation transitional shale in northwest Guizhou[J]. Journal of China Coal Society, 2018, 43(6): 1580-1588. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201806010.htm
    [38] 陈静, 吴伟, 王娟, 等. 南华北盆地偃龙地区二叠系泥页岩微观孔隙特征及其影响因素分析[J]. 地质力学学报, 2017, 23(6): 829-837. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201706004.htm

    Chen Jing, Wu Wei, Wang Juan, et al. Microscopic pore characteristics and influence factors analysis of shales in Permian, yanlong area, southern North China basin[J]. Journal of Geomechanics, 2017, 23(6): 829-837. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201706004.htm
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  396
  • HTML全文浏览量:  314
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-30
  • 修回日期:  2021-01-31
  • 刊出日期:  2021-10-01

目录

    /

    返回文章
    返回