留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多孔介质渗透迂曲度理论推导与实验验证

薛东杰 赵艾博 刘奎昌 侯孟冬 付艳艳 辛翠 徐颜卓

薛东杰, 赵艾博, 刘奎昌, 侯孟冬, 付艳艳, 辛翠, 徐颜卓. 多孔介质渗透迂曲度理论推导与实验验证[J]. 矿业科学学报, 2021, 6(5): 615-622. doi: 10.19606/j.cnki.jmst.2021.05.011
引用本文: 薛东杰, 赵艾博, 刘奎昌, 侯孟冬, 付艳艳, 辛翠, 徐颜卓. 多孔介质渗透迂曲度理论推导与实验验证[J]. 矿业科学学报, 2021, 6(5): 615-622. doi: 10.19606/j.cnki.jmst.2021.05.011
Xue Dongjie, Zhao Aibo, Liu Kuichang, Hou Mengdong, Fu Yanyan, Xin Cui, Xu Yanzhuo. On the theoretical calculation of tortuosity in porous media and its experimental validation[J]. Journal of Mining Science and Technology, 2021, 6(5): 615-622. doi: 10.19606/j.cnki.jmst.2021.05.011
Citation: Xue Dongjie, Zhao Aibo, Liu Kuichang, Hou Mengdong, Fu Yanyan, Xin Cui, Xu Yanzhuo. On the theoretical calculation of tortuosity in porous media and its experimental validation[J]. Journal of Mining Science and Technology, 2021, 6(5): 615-622. doi: 10.19606/j.cnki.jmst.2021.05.011

多孔介质渗透迂曲度理论推导与实验验证

doi: 10.19606/j.cnki.jmst.2021.05.011
基金项目: 

中央高校基本科研业务费专项资金 2018B051616

中央高校基本科研业务费专项资金 2021JCCXLJ01

中央高校基本科研业务费专项资金 2021YJSLJ06

详细信息
    作者简介:

    薛东杰(1986—),男,山东济宁人,博士,副教授,博导,主要从事临界力学等方面的研究工作。Tel: 15101127335, E-mail: xuedongjie@163.com

  • 中图分类号: TP028.8

On the theoretical calculation of tortuosity in porous media and its experimental validation

  • 摘要: 多孔介质孔隙连通的定量表征与拓扑连通重构是揭示流体渗透规律的几何方法,而理论工作的滞后严重制约了新的几何建模方法产生。迂曲度是连接渗透率与几何结构的关键载体之一,其理论模型一直没有突破。结合Hagen-Poiseuille与Darcy公式,推导了毛细管迂曲度的普适表达式及颗粒构成孔道的迂曲度公式。针对低渗介质,结合毛细管压力公式,获得了含饱和度的迂曲度公式。引入迂曲度分维,获得基于实验解析的分形影响系数表达式。对于分叉毛细管孔道,建立分叉模型,分析了迂曲度特征,得到了基于能量优化准则的母孔、子孔几何关系。以低渗盐岩渗透为例,验证了迂曲度理论公式的适用性与可靠性,研究结果为多孔介质求解迂曲度提供了一种新的思路。
  • 图  1  毛细管模型

    Figure  1.  Capillary model

    图  2  长径比和迂曲度分维与分形影响系数的关系

    Figure  2.  Fractal coefficient influenced by the aspect ratio and fractal dimension of tortuosity

    图  3  分叉示意图

    Figure  3.  Bifurcate path of capillary

    图  4  盐岩取样、加工及CT扫描

    Figure  4.  Drilling and processed sample for CT scanning

    图  5  毛细管压力曲线

    Figure  5.  Curve of capillary pressure

  • [1] Shimobe S, Spagnoli G. Fall cone tests considering water content, cone penetration index, and plasticity angle of fine-grained soils[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2020, 12(6): 1347-1355. doi: 10.1016/j.jrmge.2020.02.005
    [2] 谢和平, 张泽天, 高峰, 等. 不同开采方式下煤岩应力场-裂隙场-渗流场行为研究[J]. 煤炭学报, 2016, 41(10): 2405-2417. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201610001.htm

    Xie Heping, Zhang Zetian, Gao Feng, et al. Stress-fracture-seepage field behavior of coal under different mining layouts[J]. Journal of China Coal Society, 2016, 41(10): 2405-2417. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201610001.htm
    [3] 孟宪锐, 王鸿鹏, 刘朝晖, 等. 我国厚煤层开采方法的选择原则与发展现状[J]. 煤炭科学技术, 2009, 37(1): 39-44. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ200901014.htm

    Meng Xianrui, Wang Hongpeng, Liu Chaohui, et al. Selection principle and development status of thick seam mining methods in China[J]. Coal Science and Technology, 2009, 37(1): 39-44. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ200901014.htm
    [4] Balland C, Billiotte J, Tessier B, et al. Acoustic monitoring of a thermo-mechanical test simulating withdrawal in a gas storage salt cavern[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 111: 21-32. doi: 10.1016/j.ijrmms.2018.07.023
    [5] 张华祝. 中国高放废物地质处置: 现状和展望[J]. 铀矿地质, 2004, 20(4): 193-195. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ200404000.htm

    Zhang Huazhu. Geological disposal of high level radioactive waste in China: present situation and perspectives[J]. Uranium Geology, 2004, 20(4): 193-195. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ200404000.htm
    [6] 王睿, 周宏伟, 卓壮. 基于分数阶导数的非饱和渗流问题研究[J]. 矿业科学学报, 2019, 4(1): 17-22. http://kykxxb.cumtb.edu.cn/article/id/192

    Wang Rui, Zhou Hongwei, Zhuo Zhuang. Research on unsaturated seepage problems based on fractional order derivative[J]. Journal of Mining Science and Technology, 2019, 4(1): 17-22. http://kykxxb.cumtb.edu.cn/article/id/192
    [7] 张村, 屠世浩, 赵毅鑫, 等. 基于渗流实验的三轴流固耦合离散元数值模拟研究[J]. 矿业科学学报, 2019, 4(1): 23-33. http://kykxxb.cumtb.edu.cn/article/id/193

    Zhang Cun, Tu Shihao, Zhao Yixin, et al. Discrete element numerical simulation of triaxial fluid solid coupling based on seepage experiment[J]. Journal of Mining Science and Technology, 2019, 4(1): 23-33. http://kykxxb.cumtb.edu.cn/article/id/193
    [8] 赵毅鑫, 曹宝, 张通. 轴压和渗透压对破碎岩石渗透率影响的试验研究[J]. 矿业科学学报, 2018, 3(5): 434-441. http://kykxxb.cumtb.edu.cn/article/id/169

    Zhao Yixin, Cao Bao, Zhang Tong. Experimental study on influences of permeability of axial pressures and penetrative pressures on broken rocks[J]. Journal of Mining Science and Technology, 2018, 3(5): 434-441. http://kykxxb.cumtb.edu.cn/article/id/169
    [9] Katz A J, Thompson A H. Fractal sandstone pores: Implications for conductivity and pore formation[J]. Physical Review Letters, 1985, 54(12): 1325-1328. doi: 10.1103/PhysRevLett.54.1325
    [10] Halisch M, Kruschwitz S, Schmitt M, et al. Quantification of rock structures with high resolution X-Ray-CT for iaboratory SIP measurements[C]// 4th International Workshop on Induced Polarization, Aarhus, Denmark. 2016.
    [11] Carrier Ⅲ W D. Goodbye, hazen; hello, kozeny-carman[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(11): 1054-1056. doi: 10.1061/(ASCE)1090-0241(2003)129:11(1054)
    [12] Comiti J, Renaud M. A new model for determining mean structure parameters of fixed beds from pressure drop measurements: application to beds packed with parallelepipedal particles[J]. Chemical Engineering Science, 1989, 44(7): 1539-1545. doi: 10.1016/0009-2509(89)80031-4
    [13] Seguin D, Montillet A, Comiti J. Experimental characterisation of flow regimes in various porous media—I: Limit of laminar flow regime[J]. Chemical Engineering Science, 1998, 53(21): 3751-3761. doi: 10.1016/S0009-2509(98)00175-4
    [14] Comiti J, Sabiri N E, Montillet A. Experimental characterization of flow regimes in various porous media—Ⅲ: limit of Darcy's or creeping flow regime for Newtonian and purely viscous non-Newtonian fluids[J]. Chemical Engineering Science, 2000, 55(15): 3057-3061. doi: 10.1016/S0009-2509(99)00556-4
    [15] Blunt M J. Flow in porous media—pore-network models and multiphase flow[J]. Current Opinion in Colloid & Interface Science, 2001, 6(3): 197-207. http://www.sciencedirect.com/science/article/pii/S135902940100084X
    [16] Szymkiewicz A. Modelling water flow in unsaturated porous media: accounting for nonlinear permeability and material heterogeneity[M]. Springer Science & Business Media, 2012.
    [17] Purcell W R. Capillary pressures-their measurement using mercury and the calculation of permeability therefrom[J]. Journal of Petroleum Technology, 1949, 1(2): 39-48. doi: 10.2118/949039-G
    [18] Al-Omair O A, Al-Mudhhi S M, Al-Dousari M M. Investigating rock-face boundary effects on capillary pressure and relative permeability measurements[J]. Journal of Porous Media, 2011, 14(5): 395-409. doi: 10.1615/JPorMedia.v14.i5.30
    [19] Yu B M, Cheng P. A fractal permeability model for bi-dispersed porous media[J]. International Journal of Heat and Mass Transfer, 2002, 45(14): 2983-2993. doi: 10.1016/S0017-9310(02)00014-5
    [20] Ho C K, Arnold B W, Altman S J. Dual-permeability modeling of capillary diversion and drift shadow effects in unsaturated fractured rock[J]. Journal of Heat Transfer, 2009, 131(10): 101012. doi: 10.1115/1.3180700
    [21] Boudreau B P. The diffusive tortuosity of fine-grained unlithified sediments[J]. Geochimica et Cosmochimica Acta, 1996, 60(16): 3139-3142. doi: 10.1016/0016-7037(96)00158-5
    [22] Sen P N, Scala C, Cohen M H. A self-similar model for sedimentary rocks with application to the dielectric constant of fused glass beads[J]. GEOPHYSICS, 1981, 46(5): 781-795. doi: 10.1190/1.1441215
    [23] Koponen A, Kataja M, Timonen J. Tortuous flow in porous media[J]. Physical Review E, 1996, 54(1): 406-410. doi: 10.1103/PhysRevE.54.406
    [24] Koponen A, Kataja M, Timonen J. Permeability and effective porosity of porous media[J]. Physical Review E, 1997, 56(3): 3319-3325. doi: 10.1103/PhysRevE.56.3319
    [25] 薛东杰, 周宏伟, 邓淋升, 等. 低渗煤岩气液两相流分形运动方程[J]. 工程科学与技术, 2018, 50(4): 30-40. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201804004.htm

    Xue Dongjie, Zhou Hongwei, Deng Linsheng, et al. Fractal dynamics of gas-liquid flow in low-permeability coal[J]. Advanced Engineering Sciences, 2018, 50(4): 30-40. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201804004.htm
    [26] 李滔, 李闽, 张烈辉, 等. 微多孔介质迂曲度与孔隙结构关系[J]. 天然气地球科学, 2018, 29(8): 1181-1189. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201808012.htm

    Li Tao, Li Min, Zhang Liehui, et al. Study on the relationship of tortuosity with pore structure in micro-porous media[J]. Natural Gas Geoscience, 2018, 29(8): 1181-1189. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201808012.htm
    [27] 员美娟. 分形毛细管中Reiner-Philippoff非牛顿流体的有效渗透率研究[J]. 武汉科技大学学报, 2013, 36(2): 158-160. doi: 10.3969/j.issn.1674-3644.2013.02.018

    Yun Meijuan. Effective permeability of Reiner-Philippoff fluid in a fractal capillary[J]. Journal of Wuhan University of Science and Technology, 2013, 36(2): 158-160. doi: 10.3969/j.issn.1674-3644.2013.02.018
    [28] 袁哲, 刘鹏程. 一个适用于煤岩的新的分形毛管力模型[J]. 科学技术与工程, 2015, 15(9): 63-67. doi: 10.3969/j.issn.1671-1815.2015.09.010

    Yuan Zhe, Liu Pengcheng. A new capillary pressure model using fractal geometry for coal porous media[J]. Science Technology and Engineering, 2015, 15(9): 63-67. doi: 10.3969/j.issn.1671-1815.2015.09.010
    [29] 孔祥言. 高等渗流力学[M]. 合肥: 中国科学技术大学出版社, 1999.
    [30] 贝尔(J. Bear). 多孔介质流体动力学[M]. 李竞生, 陈崇希, 译. 北京: 中国建筑工业出版社, 1983.
    [31] 科林斯(Colins, R.E. ). 流体通过多孔材料的流动[M]. 陈钟祥, 吴望一, 译. 北京: 石油工业出版社, 1984.
    [32] Sutera S P, Skalak R. The history of poiseuille's law[J]. Annual Review of Fluid Mechanics, 1993, 25(1): 1-20. doi: 10.1146/annurev.fl.25.010193.000245
    [33] Xu P, Yu B M. Developing a new form of permeability and Kozeny-Carman constant for homogeneous porous media by means of fractal geometry[J]. Advances in Water Resources, 2008, 31(1): 74-81. doi: 10.1016/j.advwatres.2007.06.003
    [34] Wheatcraft S W, Tyler S W. An explanation of scale-dependent dispersivity in heterogeneous aquifers using concepts of fractal geometry[J]. Water Resources Research, 1988, 24(4): 566-578. doi: 10.1029/WR024i004p00566
    [35] 薛东杰, 周宏伟, 任伟光, 等. 基于Steiner最小树相似模拟裂纹扩展与能量传播的机理[J]. 煤炭学报, 2015, 40(3): 541-547. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201503009.htm

    Xue Dongjie, Zhou Hongwei, Ren Weiguang, et al. Physical modeling on mining-induced energy release of crack propagation in overlying strata based on steiner minimum tree problem[J]. Journal of China Coal Society, 2015, 40(3): 541-547. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201503009.htm
    [36] 薛东杰, 周宏伟, 王子辉, 等. 不同加载速率下煤岩采动力学响应及破坏机制[J]. 煤炭学报, 2016, 41(3): 595-602. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201603011.htm

    Xue Dongjie, Zhou Hongwei, Wang Zihui, et al. Failure mechanism and mining-induced mechanical properties of coal under different loading rates[J]. Journal of China Coal Society, 2016, 41(3): 595-602. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201603011.htm
    [37] Murray C D. The physiological principle of minimum work: I. the vascular system and the cost of blood volume[J]. PNAS, 1926, 12(3): 207-214. doi: 10.1073/pnas.12.3.207
    [38] Murray C D. The physiological principle of minimum work applied to the angle of branching of arteries[J]. The Journal of General Physiology, 1926, 9(6): 835-841. doi: 10.1085/jgp.9.6.835
    [39] Murray C D. A relationship between circumference and weight in trees and its bearing on branching angles[J]. The Journal of General Physiology, 1927, 10(5): 725-729. doi: 10.1085/jgp.10.5.725
  • 加载中
图(5)
计量
  • 文章访问数:  67
  • HTML全文浏览量:  29
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-11
  • 修回日期:  2021-06-22
  • 刊出日期:  2021-10-01

目录

    /

    返回文章
    返回