留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

盾构管片上浮量理论计算模型及上浮控制措施研究

杨志勇 杨星 张长旺 孙正阳 江玉生 邵小康

杨志勇, 杨星, 张长旺, 孙正阳, 江玉生, 邵小康. 盾构管片上浮量理论计算模型及上浮控制措施研究[J]. 矿业科学学报, 2021, 6(5): 591-597, 605. doi: 10.19606/j.cnki.jmst.2021.05.008
引用本文: 杨志勇, 杨星, 张长旺, 孙正阳, 江玉生, 邵小康. 盾构管片上浮量理论计算模型及上浮控制措施研究[J]. 矿业科学学报, 2021, 6(5): 591-597, 605. doi: 10.19606/j.cnki.jmst.2021.05.008
Yang Zhiyong, Yang Xing, Zhang Changwang, Sun Zhengyang, Jiang Yusheng, Shao Xiaokang. Research on theoretical calculation model of shield segments floating amount and floating control measures[J]. Journal of Mining Science and Technology, 2021, 6(5): 591-597, 605. doi: 10.19606/j.cnki.jmst.2021.05.008
Citation: Yang Zhiyong, Yang Xing, Zhang Changwang, Sun Zhengyang, Jiang Yusheng, Shao Xiaokang. Research on theoretical calculation model of shield segments floating amount and floating control measures[J]. Journal of Mining Science and Technology, 2021, 6(5): 591-597, 605. doi: 10.19606/j.cnki.jmst.2021.05.008

盾构管片上浮量理论计算模型及上浮控制措施研究

doi: 10.19606/j.cnki.jmst.2021.05.008
基金项目: 

国家自然科学基金煤炭联合基金 U1261212

详细信息
    作者简介:

    杨志勇(1980—),男,湖北松滋人,博士,讲师,主要从事盾构/TBM隧道技术的教学与研究工作。Tel:18610719295,E-mail:yangzy1010@126.com

  • 中图分类号: TU41

Research on theoretical calculation model of shield segments floating amount and floating control measures

  • 摘要: 盾构管片上浮会导致管片错台、破损,降低隧道的整体结构强度、防水性能及使用寿命。在建立管片受力模型的基础上,通过分析管片的受力状态建立了管片上浮的理论计算模型。以北京地铁新机场线3号风井至草桥站盾构区间为背景,对该区间管片异常上浮的原因进行了分析,通过改良同步注浆浆液性能有效地控制了管片的上浮量,并对改进前后的浆液特性进行了试验,最后基于浆液试验结果和理论计算模型对管片上浮量进行了计算。研究结果表明:管片上浮量的理论计算结果与实测值较为吻合,本文的理论计算模型具有较好的准确性; 管片在脱出盾尾后的短时间内会大量上浮,缩短浆液初凝时间、提高其早期强度是控制管片上浮的有效措施。
  • 图  1  管片受力示意图

    Figure  1.  Schematic diagram of segment force

    图  2  同步注浆压力分布及管路布置情况

    Figure  2.  Synchronous grouting pressure distribution and pipeline layout

    图  3  黏滞阻力计算示意图

    Figure  3.  Schematic diagram of viscous resistance calculation

    图  4  地质剖面图

    Figure  4.  Geologic profile

    图  5  280~490环管片上浮量的实测值与计算值

    Figure  5.  Measured value and calculated value of the floating amount of the segment between 280 and 490 rings

    图  6  开挖地层情况

    Figure  6.  Excavated ground conditions

    图  7  浆液改进前后管片上浮量-时间关系

    Figure  7.  Floating amount of segment before and after slurry improvement-time relationship

    图  8  浆液配比及力学特性试验

    Figure  8.  Slurry ratio and mechanical characteristics test

    表  1  管片上浮量计算参数

    Table  1.   Calculation parameters of the floating amount of the segment

    参数 数值 参数 数值
    b 1.6 m μt 1.16×103 kPa·s
    R0 4.4 m n 16
    γj 12 kN/m3 Ni 100 kN
    γc 25 kN/m3 k1 1.56×103 kPa·s
    R1 3.95 m k2 0.015
    Nj 5 000 kN lb 0.4 m
    rb 0.015 m [τ] 175 MPa
    δ1 0.175 m μ 0.31
    A 14.608 m2 E0 140 MPa
    δ2 0.05 m q1 160 kPa
    β 1.63° q2 250 kPa
    T 2.5×104 kN
    下载: 导出CSV

    表  2  同步注浆浆液配比参数

    Table  2.   Synchronous grouting slurry ratio

    浆液 水泥/kg 粉煤灰/kg 膨润土/kg 砂/kg 水/kg
    改进前 120 400 130 800 700
    改进后 160 400 150 550 640
    下载: 导出CSV

    表  3  同步注浆浆液强度及时变性参数

    Table  3.   Synchronous grouting slurry characteristics and time varying parameters

    浆液 初凝时间/h 抗压强度/kPa k1/(MPa·s) k2
    1d 2d 7d
    改进前 4.5 59 267.96 519.8 1.56 0.015
    改进后 3 217 695.3 3 154.5 2.05 0.02
    下载: 导出CSV
  • [1] 汤扬屹, 吴贤国, 陈虹宇, 等. 基于云模型与D-S证据理论的盾构施工隧道管片上浮风险评价[J]. 隧道建设: 中英文, 2019, 39(12): 2011-2019. doi: 10.3973/j.issn.2096-4498.2019.12.011

    Tang Yangyi, Wu Xianguo, Chen Hongyu, et al. Evaluation of floating risk of shield tunnel segments based on cloud model and D-S evidence theory[J]. Tunnel Construction, 2019, 39(12): 2011-2019. doi: 10.3973/j.issn.2096-4498.2019.12.011
    [2] 董林伟, 杨志勇, 江玉生, 等. 暗挖装配式区间管片接缝密封垫老化研究[J]. 矿业科学学报, 2021, 6(2): 196-203. doi: 10.19606/j.cnki.jmst.2021.02.007

    Dong Linwei, Yang Zhiyong, Jiang Yusheng, et al. Study on the gasket durability in the segment joint of subsurface excavated fabricated section[J]. Journal of Mining Science and Technology, 2021, 6(2): 196-203. doi: 10.19606/j.cnki.jmst.2021.02.007
    [3] 黄仁东, 金浩, 蒙水儒. 基于理想点法的盾构隧道管片上浮致伤诊断[J]. 中国安全科学学报, 2013, 23(1): 48-54. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201301009.htm

    Huang Rendong, Jin Hao, Meng Shuiru. Diagnosis of damage caused by shield tunnel segment floating up based on ideal point method[J]. China Safety Science Journal, 2013, 23(1): 48-54. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201301009.htm
    [4] 李强, 甘鹏路, 钟小春. 盾构隧道管片壁后注浆厚度对隧道抗浮影响研究[J]. 现代隧道技术, 2019, 56(6): 27-35. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201906004.htm

    Li Qiang, Gan Penglu, Zhong Xiaochun. Study on effect of backfilling grouting thickness on anti-floating of the shield tunnel[J]. Modern Tunnelling Technology, 2019, 56(6): 27-35. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201906004.htm
    [5] Watanabe K, Sawada R, Koseki J. Uplift mechanism of open-cut tunnel in liquefied ground and simplified method to evaluate the stability against uplifting[J]. Soils and Foundations, 2016, 56(3): 412-426. doi: 10.1016/j.sandf.2016.04.008
    [6] 叶飞, 朱合华, 何川. 盾构隧道壁后注浆扩散模式及对管片的压力分析[J]. 岩土力学, 2009, 30(5): 1307-1312. doi: 10.3969/j.issn.1000-7598.2009.05.020

    Ye Fei, Zhu Hehua, He Chuan. Back-filled grouts diffusion model and its pressure to segments of shield tunnel[J]. Rock and Soil Mechanics, 2009, 30(5): 1307-1312. doi: 10.3969/j.issn.1000-7598.2009.05.020
    [7] 叶飞, 朱合华, 丁文其, 等. 施工期盾构隧道上浮机理与控制对策分析[J]. 同济大学学报: 自然科学版, 2008, 36(6): 738-743. doi: 10.3321/j.issn:0253-374X.2008.06.006

    Ye Fei, Zhu Hehua, Ding Wenqi, et al. Analysis and control of upward moving of shield tunnel under construction[J]. Journal of Tongji University: Natural Science, 2008, 36(6): 738-743. doi: 10.3321/j.issn:0253-374X.2008.06.006
    [8] 肖明清, 孙文昊, 韩向阳. 盾构隧道管片上浮问题研究[J]. 岩土力学, 2009, 30(4): 1041-1045, 1056. doi: 10.3969/j.issn.1000-7598.2009.04.031

    Xiao Mingqing, Sun Wenhao, Han Xiangyang. Research on upward moving of segments of shield tunel[J]. Rock and Soil Mechanics, 2009, 30(4): 1041-1045, 1056. doi: 10.3969/j.issn.1000-7598.2009.04.031
    [9] 舒瑶, 季昌, 周顺华, 等. 考虑地层渗透性的盾构隧道施工期管片上浮预测[J]. 岩石力学与工程学报, 2017, 36(S1): 3516-3524. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2017S1046.htm

    Shu Yao, Ji Chang, Zhou Shunhua, et al. Prediction for shield tunnel segment uplift considering the effect of stratum permeability[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(S1): 3516-3524. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2017S1046.htm
    [10] 梁禹, 阳军生, 林辉. 大直径盾构隧道施工阶段管片上浮与受力研究[J]. 现代隧道技术, 2016, 53(3): 91-97. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201603013.htm

    Liang Yu, Yang Junsheng, Lin Hui. On segment floating and relevant mechanical behaviors during large Diameter shield tunnelling[J]. Modern Tunnelling Technology, 2016, 53(3): 91-97. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201603013.htm
    [11] 张君, 赵林, 周佳媚, 等. 盾构隧道管片上浮的机制研究[J]. 铁道标准设计, 2016, 60(10): 88-93. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201610020.htm

    Zhang Jun, Zhao Lin, Zhou Jiamei, et al. Research on upward moving mechanism for segment of shield tunnel[J]. Railway Standard Design, 2016, 60(10): 88-93. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201610020.htm
    [12] 魏纲, 洪杰, 魏新江. 盾构隧道施工阶段管片上浮的力学分析[J]. 岩石力学与工程学报, 2012, 31(6): 1257-1263. doi: 10.3969/j.issn.1000-6915.2012.06.022

    Wei Gang, Hong Jie, Wei Xinjiang. Mechanical analysis of segment floating during shield tunnel construction[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(6): 1257-1263. doi: 10.3969/j.issn.1000-6915.2012.06.022
    [13] Bezuijen A, Talmon A M, Kaalberg F J, et al. Field measurements of grout pressures during tunnelling of the sophia rail tunnel[J]. Soils and Foundations, 2004, 44(1): 39-48. doi: 10.3208/sandf.44.39
    [14] 钟小春, 罗近海, 邓有春, 等. 稳定地层盾尾管片壁后注浆窜浆机理及模型试验[J]. 隧道与地下工程灾害防治, 2020, 2(2): 58-65. https://www.cnki.com.cn/Article/CJFDTOTAL-SDZH202002009.htm

    Zhong Xiaochun, Luo Jinhai, Deng Youchun, et al. Escaping mechanism of shield tail grouting and its model test during shield tunnelling surrounding rock stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2020, 2(2): 58-65. https://www.cnki.com.cn/Article/CJFDTOTAL-SDZH202002009.htm
    [15] Maghous S, Saada Z, Dormieux L, et al. A model for in situ grouting with account for particle filtration[J]. Computers and Geotechnics, 2007, 34(3): 164-174. doi: 10.1016/j.compgeo.2006.11.003
    [16] 张雨帆. 盾构隧道施工期同步注浆引起隧道上浮及管片错台研究[D]. 成都: 西南交通大学, 2018.
    [17] 许延春, 张二蒙, 赵霖, 等. 黏度对浆液在裂隙岩体中扩散与充填规律的影响[J]. 矿业科学学报, 2021, 6(1): 71-81. doi: 10.19606/j.cnki.jmst.2021.01.008

    Xu Yanchun, Zhang Ermeng, Zhao Lin, et al. Study on the law of influence by slurry viscosity on the fractured aquifer grouting and diffusion[J]. Journal of Mining Science and Technology, 2021, 6(1): 71-81. doi: 10.19606/j.cnki.jmst.2021.01.008
    [18] 韦征, 江玉生. 基于Timoshenko梁的盾构上跨对既有隧道纵向变形影响研究[J]. 矿业科学学报, 2021, 6(1): 30-41. doi: 10.19606/j.cnki.jmst.2021.01.004

    Wei Zheng, Jiang Yusheng. Study on the influence of above-crossing tunneling on the existing shield tunnels based on Timoshenko beam[J]. Journal of Mining Science and Technology, 2021, 6(1): 30-41. doi: 10.19606/j.cnki.jmst.2021.01.004
    [19] 邱军领, 赖金星, 刘炽, 等. 盾构隧道壁后空洞注浆对管片受力特性的影响[J]. 解放军理工大学学报: 自然科学版, 2016, 17(4): 364-370. https://www.cnki.com.cn/Article/CJFDTOTAL-JFJL201604010.htm

    Qiu Junling, Lai Jinxing, Liu Chi, et al. Mechanics effects of backing void grouting on shield tunnel segment[J]. Journal of PLA University of Science and Technology: Natural Science Edition, 2016, 17(4): 364-370. https://www.cnki.com.cn/Article/CJFDTOTAL-JFJL201604010.htm
    [20] 舒瑶, 周顺华, 季昌, 等. 多变复合地层盾构隧道施工期管片上浮实测数据分析与量值预测[J]. 岩石力学与工程学报, 2017, 36(S1): 3464-3474. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2017S1040.htm

    Shu Yao, Zhou Shunhua, Ji Chang, et al. Analysis of shield tunnel segment uplift data and uplift value forecast during tunnel construction in variable composite formation[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(S1): 3464-3474. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2017S1040.htm
    [21] 阙仁波, 王奎华. 复平面上超越方程的数值解法及其应用[J]. 科技通报, 2008, 24(2): 149-153. doi: 10.3969/j.issn.1001-7119.2008.02.001

    Que Renbo, Wang Kuihua. Numerical algorithms for transcendental equations in A complex plane and its applications[J]. Bulletin of Science and Technology, 2008, 24(2): 149-153. doi: 10.3969/j.issn.1001-7119.2008.02.001
    [22] Liang Y, Zhang J, Lai Z S, et al. Temporal and spatial distribution of the grout pressure and its effects on lining segments during synchronous grouting in shield tunnelling[J]. European Journal of Environmental and Civil Engineering, 2020, 24(1): 79-96. doi: 10.1080/19648189.2017.1364299
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  64
  • HTML全文浏览量:  31
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-01
  • 修回日期:  2021-05-25
  • 刊出日期:  2021-10-01

目录

    /

    返回文章
    返回