留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地下工程吸能锚杆研究现状与展望

江贝 王琦 魏华勇 辛忠欣 何满潮 吴文瑞 马凤林 许硕 王业泰

江贝, 王琦, 魏华勇, 辛忠欣, 何满潮, 吴文瑞, 马凤林, 许硕, 王业泰. 地下工程吸能锚杆研究现状与展望[J]. 矿业科学学报, 2021, 6(5): 569-580. doi: 10.19606/j.cnki.jmst.2021.05.006
引用本文: 江贝, 王琦, 魏华勇, 辛忠欣, 何满潮, 吴文瑞, 马凤林, 许硕, 王业泰. 地下工程吸能锚杆研究现状与展望[J]. 矿业科学学报, 2021, 6(5): 569-580. doi: 10.19606/j.cnki.jmst.2021.05.006
Jiang Bei, Wang Qi, Wei Huayong, Xin Zhongxin, He Manchao, Wu Wenrui, Ma Fenglin, Xu Shuo, Wang Yetai. Recent development and prospects of energy-absorbing bolt in underground engineering[J]. Journal of Mining Science and Technology, 2021, 6(5): 569-580. doi: 10.19606/j.cnki.jmst.2021.05.006
Citation: Jiang Bei, Wang Qi, Wei Huayong, Xin Zhongxin, He Manchao, Wu Wenrui, Ma Fenglin, Xu Shuo, Wang Yetai. Recent development and prospects of energy-absorbing bolt in underground engineering[J]. Journal of Mining Science and Technology, 2021, 6(5): 569-580. doi: 10.19606/j.cnki.jmst.2021.05.006

地下工程吸能锚杆研究现状与展望

doi: 10.19606/j.cnki.jmst.2021.05.006
基金项目: 

国家自然科学基金 52074164

国家自然科学基金 42077267

国家自然科学基金 41941018

山东省杰出青年科学基金 ZR2020JQ23

山东省重大科技创新工程项目 2019SDZY04

详细信息
    作者简介:

    江贝(1985—),女,山东济南人,博士,讲师,主要从事复杂条件地下工程围岩控制理论与方法等方面的研究工作。Tel: 18253195766, E-mail:jiangbei519@163.com

    通讯作者:

    王琦(1983—),男,山东临沂人,博士,教授,主要从事地下工程围岩控制理论与无煤柱自成巷开采方法等方面的研究工作。Tel: 13583120068, E-mail:chinawangqi@163.com

  • 中图分类号: TD35

Recent development and prospects of energy-absorbing bolt in underground engineering

  • 摘要: 锚杆是地下工程硐室的主体支护方式,为吸收围岩变形释放的能量,控制围岩变形,需要研发具有高恒阻力、高延伸率和高预应力的吸能锚杆。本文从吸能锚杆的研发历程、性能试验与现场应用3个方面进行了总结和分析。吸能锚杆通过结构滑移和材料变形2种方式吸收能量,按工作原理可分为结构型与材料型2种吸能锚杆。两者相比,材料型吸能锚杆结构相对简单,能够充分发挥材料力学性能。笔者团队研发了恒阻吸能新材料锚杆,开展了静力拉伸与动力冲击试验,结果表明该锚杆具备高强、高延伸率和高吸能特性,能够满足复杂条件下的围岩控制要求。未来应制定恒阻吸能锚杆的试验、设计、施工与验收标准,实现其在矿山、交通、市政、水利等不同领域地下工程中的推广和应用。
  • 图  1  吸能锚杆分类

    Figure  1.  Classification of energy-absorbing bolt

    图  2  静力拉伸试验系统

    Figure  2.  Static tensile test system

    图  3  落锤冲击试验系统

    Figure  3.  Drop hammer impact test system

    图  4  荷载-延伸率曲线

    Figure  4.  Load-elongation curves

    图  5  静力学特性对比

    Figure  5.  Comparison of static characteristics

    图  6  锚杆单次冲击位移-冲击次数曲线

    Figure  6.  Bolt single impact displacement-impact times curves

    图  7  动力学特性对比

    Figure  7.  Comparison of dynamic characteristics

    表  1  吸能锚杆研发历程

    Table  1.   Research and development history of energy-absorbing bolt

    序号 时间 锚杆名称 锚杆类型 构件组成 单位/人员 技术革新
    1-1 1982年 Swellex锚杆[15] 杆体结构型 Atlas Copco公司   利用高压注水使杆体膨胀,利用杆体-围岩的摩擦做功吸收能量
    1-2 1987年 Cone锚杆[15-17] Chamber of Mines Research Organization   在锚杆尾部添加锥形体,利用锥形体-锚固剂的摩擦做功吸收能量
    1-3 2000年 Modified Cone锚杆[18-19] Noranda公司   在Cone锚杆的基础上添加了树脂搅拌装置,利用锥形体-锚固剂的摩擦做功吸收能量
    1-4 2020年 J型锚杆[20] 赵兴东等   将Cone锚杆和D型锚杆的功能结合,同时利用锚杆锥形体-锚固剂的摩擦做功和杆体变形吸收能量
    2-1 1995年 Garford锚杆[15, 21-22] 机械结构型 Garford Pty公司   利用锚箍对杆体的挤压变形和杆体-锚箍的摩擦做功吸收能量
    2-2 2009年 Roofex锚杆[23] Atlas Copco公司   利用销钉-杆体的摩擦做功吸收能量
    2-3 2009年 恒阻大变形锚杆[24-25] 何满潮等   研发负泊松比结构装置,利用锥体-套管的摩擦做功吸收能量,具有高恒阻力、大变形能力
    3-1 2006年 D型锚杆[26] 杆体材料型 Li   研发能够多点锚固的锚杆,利用锚固单元间的变形单元吸收能量,部分变形单元失效不会影响其他部分工作
    3-2 2010年 BHRB锚杆[27] 康红普等   通过优化杆体材料使锚杆达到高强和超高强级别,利用锚杆杆体变形吸收能量
    3-3 2018年 PAR1锚杆[28] New Concept Mining公司   在D型锚杆基础上,优化了桨形锚固结构,采用两点锚固方式,利用锚固单元间的变形单元吸收能量
    下载: 导出CSV

    表  2  典型吸能锚杆静力学试验统计

    Table  2.   Static test statistics of typical energy-absorbing bolt

    序号 锚杆类型 锚杆分类 研究人员/单位 杆体直径/mm 杆体长度/mm 屈服荷载/kN 极限荷载/kN 伸长量/mm
    1-1 Swellex锚杆[29] 杆体结构型 Xu等 20 2 200 235 153
    1-2 Cone锚杆[17] Ortlepp 22 2 000~2 300 181~253 >30
    1-3 Modified Cone锚杆[30] Cai等 17 150 >150
    1-4 J型锚杆[20] 赵兴东等 22 2 229 172 196 15
    2-1 Garford锚杆[31] 机械结构型 Sengani 22 153~165 184~233 252~280
    2-2 Roofex锚杆[23] Ozbay等 13 1 800 80 100 300
    2-3 恒阻大变形锚杆[13] 何满潮等 22 1 459 150 160 627
    3-1 D型锚杆[26] 杆体材料型 Li 12 90 51 69 22
    3-2 BHRB锚杆[32] 王爱文等 22 2 200 200~210 360~370 360~370
    3-3 PAR1锚杆[33] New Concept Mining公司 20 2 400 210 185
    下载: 导出CSV

    表  3  典型吸能锚杆动力学试验统计

    Table  3.   Dynamic test statistics of typical energy-absorbing bolt

    序号 锚杆名称 锚杆类型 研究人员 杆体直径/mm 杆体长度/mm 伸长量/mm 吸收能量/104J
    1-1 Swellex锚杆[34] 杆体结构型 Charette等 28 80 2.9
    1-2 Cone锚杆[35] OrtIepp等 22 2 000~2 300 3.9
    1-3 Modified Cone锚杆[36] St-Pierre等 17 2 200 250 3.0
    1-4 J型锚杆[20] 赵兴东等 22 1 985~1 991 184 4.7
    2-1 Garford锚杆[37] 机械结构型 Varden等 20 350 180 6.5~7.0
    2-2 Roofex锚杆[38] Charette等 20 200 2.7
    2-3 恒阻大变形锚杆[13, 39] 何满潮等 22 2 400 580 5.4
    3-1 D型锚杆[26, 40] 杆体材料型 Li 22 900 143 2.0~3.7
    3-2 BHRB锚杆[32] 王爱文等 22 2 200 385 6.0
    3-3 PAR1锚杆[41] Knox等 25 2 400 254 9.8~10.2
    下载: 导出CSV

    表  4  静力拉伸与动力冲击试验方案

    Table  4.   Static tensile and dynamic impact test scheme

    试验编号 试验类型 试件类型 杆体直径/mm 杆体长度/mm
    CREA-S 静力拉伸 CREA锚杆 18 1 500
    CRLD-S 试验 CRLD锚杆 22
    CREA-D 动力冲击 CREA锚杆 18 3 000
    CRLD-D 试验 CRLD锚杆 22
    下载: 导出CSV

    表  5  吸能锚杆典型现场应用

    Table  5.   Typical field application of energy-absorbing bolt

    时间 锚杆名称 锚杆类型 工程地点 工程特点 埋深/m 屈服荷载/kN 预紧力/kN 围岩控制效果
    1999年 Cone锚杆[45] 杆体结构型 Dig Bell Mine 高应力强冲击倾向性 410~535   在等级M=1.7的微震影响下,围岩最大变形为500 mm
    2000年 Modified Cone锚杆[19] Brunswick Mine 高应力强冲击倾向性 892   锚杆最大变形180 mm,有效吸收了围岩变形能量
    2008年 Modified Cone锚杆[18] Vale Inco Copper Cliff North Mine 高应力强冲击倾向性   在等级Mn=2.9的微震影响下,锚杆未破断失效
    2011年 恒阻大变形锚杆[25] 机械结构型 白皎煤矿 强动压扰动 482 120~150 60   顶底移近量150 mm
    2014年 恒阻大变形锚杆[46] 新安煤矿 软弱围岩 750 100   顶底移近量62~92 mm
      两帮收敛量98~110 mm
    2018年 Garford锚杆[31] 南非某金矿 强冲击倾向性 153~165   在6次等级M=0.5~2.6的微震影响下,锚杆未破断失效
    2012年 D型锚杆[40] 杆体材料型 瑞典某金属矿 高应力 171   支护区域巷道顶板稳定
    2015年 BHRB锚杆[47] 塔山煤矿 高应力 470 m 152.7 60   顶底移近量252 mm
      两帮收敛量405 mm
    2021年 CREA锚杆[42] 赵楼煤矿 高应力强冲击倾向性 1 037 199.8 130   顶底移近量165 mm
      两帮收敛量128 mm
    下载: 导出CSV
  • [1] 何满潮, 谢和平, 彭苏萍, 等. 深部开采岩体力学研究[J]. 岩石力学与工程学报, 2005, 24(16): 2803-2813. doi: 10.3321/j.issn:1000-6915.2005.16.001

    He Manchao, Xie Heping, Peng Suping, et al. Study on rock mechanics in deep mining engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(16): 2803-2813. doi: 10.3321/j.issn:1000-6915.2005.16.001
    [2] Wang Q, He M C, Yang J, et al. Study of a no-pillar mining technique with automatically formed gob-side entry retaining for longwall mining in coal mines[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 110: 1-8. doi: 10.1016/j.ijrmms.2018.07.005
    [3] 王琦, 高红科, 蒋振华, 等. 地下工程围岩数字钻探测试系统研发与应用[J]. 岩石力学与工程学报, 2020, 39(2): 301-310. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202002010.htm

    Wang Qi, Gao Hongke, Jiang Zhenhua, et al. Development and application of a surrounding rock digital drilling test system of underground engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(2): 301-310. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202002010.htm
    [4] 张国锋, 王二雨, 许丽莹. 煤矿高恒阻大变形锚索受力特性、规律及应用研究[J]. 岩石力学与工程学报, 2016, 35(10): 2033-2043. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201610010.htm

    Zhang Guofeng, Wang Eryu, Xu Liying. Mechanical characteristics of high constant resistance and large deformation anchor rope in coal mines[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(10): 2033-2043. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201610010.htm
    [5] 何满潮. 深部软岩工程的研究进展与挑战[J]. 煤炭学报, 2014, 39(8): 1409-1417. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201408006.htm

    He Manchao. Progress and challenges of soft rock engineering in depth[J]. Journal of China Coal Society, 2014, 39(8): 1409-1417. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201408006.htm
    [6] 潘一山, 齐庆新, 王爱文, 等. 煤矿冲击地压巷道三级支护理论与技术[J]. 煤炭学报, 2020, 45(5): 1585-1594. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202005004.htm

    Pan Yishan, Qi Qingxin, Wang Aiwen, et al. Theory and technology of three levels support in bump-prone roadway[J]. Journal of China Coal Society, 2020, 45(5): 1585-1594. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202005004.htm
    [7] Wang Q, Qin Q, Jiang B, et al. Mechanized construction of fabricated Arches for large-diameter tunnels[J]. Automation in Construction, 2021, 124: 103583. doi: 10.1016/j.autcon.2021.103583
    [8] Wang Q, Xin Z X, Jiang B, et al. Comparative experimental study on mechanical mechanism of combined Arches in large section tunnels[J]. Tunnelling and Underground Space Technology, 2020, 99: 103386. doi: 10.1016/j.tust.2020.103386
    [9] 王琦, 许硕, 江贝, 等. 地下工程约束混凝土支护理论与技术研究进展[J]. 煤炭学报, 2020, 45(8): 2760-2776. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202008007.htm

    Wang Qi, Xu Shuo, Jiang Bei, et al. Research progress of confined concrete support theory and technology for underground engineering[J]. Journal of China Coal Society, 2020, 45(8): 2760-2776. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202008007.htm
    [10] 王琦, 江贝, 辛忠欣, 等. 无煤柱自成巷三维地质力学模型试验系统研制与工程应用[J]. 岩石力学与工程学报, 2020, 39(8): 1582-1594. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202008008.htm

    Wang Qi, Jiang Bei, Xin Zhongxin, et al. Development of a 3D geomechanical model test system for non-pillar mining with automatically formed roadway and its engineering application[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(8): 1582-1594. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202008008.htm
    [11] 王琦, 张朋, 蒋振华, 等. 深部高强锚注切顶自成巷方法与验证[J]. 煤炭学报, 2021, 46(2): 382-397. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202102006.htm

    Wang Qi, Zhang Peng, Jiang Zhenhua, et al. Automatic roadway formation method by roof cutting with high strength bolt-grouting in deep coal mine and its validation[J]. Journal of China Coal Society, 2021, 46(2): 382-397. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202102006.htm
    [12] 张农, 阚甲广, 杨森. 锚杆(索)和U型钢支架支护失效形式与控制技术[J]. 煤炭科学技术, 2015, 43(6): 41-47. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201506008.htm

    Zhang Nong, Kan Jiaguang, Yang Sen. Control technology and failure types of anchor bolt support and U-steel frame support[J]. Coal Science and Technology, 2015, 43(6): 41-47. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201506008.htm
    [13] 何满潮, 郭志飚. 恒阻大变形锚杆力学特性及其工程应用[J]. 岩石力学与工程学报, 2014, 33(7): 1297-1308. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201407001.htm

    He Manchao, Guo Zhibiao. Mechanical property and engineering application of anchor bolt with constant resistance and large deformation[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(7): 1297-1308. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201407001.htm
    [14] 何满潮. 深部建井力学研究进展[J]. 煤炭学报, 2021, 46(3): 726-746. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202103004.htm

    He Manchao. Research progress of deep shaft construction mechanics[J]. Journal of China Coal Society, 2021, 46(3): 726-746. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202103004.htm
    [15] Cai M, Kaiser P K. Rockburst support reference book-volume I: rockburst phenomenon and support characteristics[M]. Sudbury: Laurentian University, 2018: 284-285.
    [16] Jager A F. Two new support units for the control ofrockburst damage[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstract, 1994, 31(2): 621-631. http://www.researchgate.net/publication/284117962_Two_new_support_units_for_the_control_of_rockburst_damage
    [17] Ortlepp W D. Grouted rock-studs as rockburst support: A simple design approach and an effective test procedure[J]. Journal of the Southern African Institute of Mining and Metallurgy, 1994, 94(2): 47-63. http://reference.sabinet.co.za/webx/access/journal_archive/0038223X/2296.pdf
    [18] Cai M, Champaigne D. The art of rock support in burst-prone ground[C]// RaSiM 7(2009): Controlling Seismic Hazard and Sustainable Development of Deep Mines. Paramus USA: Rinton Press, 2009: 33-46.
    [19] Simser B, Joughin W C, Ortlepp W D. The performance of Brunswick Mine's rockburst support system during a severe seismic episode[J]. Journal-South African Institute of Mining and Metallurgy, 2002, 102(4): 217-223. http://www.researchgate.net/publication/279590462_The_performance_of_Brunswick_Mine's_rockburst_support_system_during_a_severe_seismic_episode
    [20] 赵兴东, 朱乾坤, 牛佳安, 等. 一种新型J释能锚杆力学作用机制及其动力冲击实验研究[J]. 岩石力学与工程学报, 2020, 39(1): 13-21. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202001002.htm

    Zhao Xingdong, Zhu Qiankun, Niu Jiaan, et al. Mechanical mechanism analyses and dynamic impact experimental tests of a kind of novel J energy-releasing bolts[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(1): 13-21. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202001002.htm
    [21] Hyett A J, Bawden W F, Hedrick N, et al. A laboratory evaluation of the 25 mm garford bulb anchor for cable bolt reinforcement[J]. Cim Bulletin, 1995, 88(992): 54-59. http://www.ingentaconnect.com/content/els/01489062/1996/00000033/00000004/art85153
    [22] Varden R P. Development and Implementation of the garford dynamic bolt at kanowna belle mine[C]// Tang C. Controlling seismic hazard and sustainable development of deep mines: 7th international symposium on rockburst and seismicity in mines(RASIM7). Paramus USA: Rinton Press, 2009: 215-222.
    [23] Ozbay U, Neugebauer E. In-situ pull testing of a yieldable rock bolt, roofex[C]// RaSiM 7(2009): Controlling Seismic Hazard and Sustainable Development of Deep Mines. Paramus USA: Rinton Press, 2009: 1081-1090.
    [24] 李晨. NPR锚杆冲击拉伸动力学特性研究[D]. 北京: 中国矿业大学(北京), 2016.
    [25] 张国锋, 何满潮, 俞学平, 等. 白皎矿保护层沿空切顶成巷无煤柱开采技术研究[J]. 采矿与安全工程学报, 2011, 28(4): 511-516. doi: 10.3969/j.issn.1673-3363.2011.04.003

    Zhang Guofeng, He Manchao, Yu Xueping, et al. Research on the technique of no-pillar mining with gob-side entry formed by advanced roof caving in the protective seam in baijiao coal mine[J]. Journal of Mining & Safety Engineering, 2011, 28(4): 511-516. doi: 10.3969/j.issn.1673-3363.2011.04.003
    [26] Li C C. A new energy-absorbing bolt for rock support in high stress rock masses[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(3): 396-404. doi: 10.1016/j.ijrmms.2010.01.005
    [27] 康红普, 王金华, 林健. 煤矿巷道锚杆支护应用实例分析[J]. 岩石力学与工程学报, 2010, 29(4): 649-664. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201004004.htm

    Kang Hongpu, Wang Jinhua, Lin Jian. Case studies of rock bolting in coal mine roadways[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(4): 649-664. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201004004.htm
    [28] Knox G, Berghorst A, Crompton B. The relationship between the magnitude of impact velocity per impulse and cumulative absorbed energy capacity of a rock bolt[C]// Proceedings of The Fourth Australasian Ground Control in Mining Conference Proceedings. Sydney Australia: The Australasian Institute of Mining and Metallurgy, 2018: 160-169.
    [29] Xu S, Hou P Y, Cai M, et al. An experiment study on a novel self-swelling anchorage bolt[J]. Rock Mechanics and Rock Engineering, 2019, 52(11): 4855-4862. doi: 10.1007/s00603-019-01854-0
    [30] Cai M, Champaigne D, Kaiser P K. Development of a fully debonded cone bolt for rockburst support[C]// Deep Mining 2010. Perth Australia: Australian Centre for Geomechanics, 2010: 329-342.
    [31] Sengani F. Trials of the Garford hybrid dynamic bolt reinforcement system at a deep-level gold mine in South Africa[J]. Journal of the Southern African Institute of Mining and Metallurgy, 2018, 118(3): 289-296. doi: 10.17159/2411-9717/2018/v118n3a11
    [32] 王爱文, 高乾书, 代连朋, 等. 锚杆静-动力学特性及其冲击适用性[J]. 煤炭学报, 2018, 43(11): 2999-3006. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201811006.htm

    Wang Aiwen, Gao Qianshu, Dai Lianpeng, et al. Static and dynamic performance of rebar bolts and its adaptability under impact loading[J]. Journal of China Coal Society, 2018, 43(11): 2999-3006. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201811006.htm
    [33] Sharifzadeh M, Lou J F, Crompton B. Dynamic performance of energy-absorbing rockbolts based on laboratory test results. Part I: Evolution, deformation mechanisms, dynamic performance and classification[J]. Tunnelling and Underground Space Technology, 2020, 105: 103510. doi: 10.1016/j.tust.2020.103510
    [34] Charette F. Performance of Swellex rock bolts under dynamic loading conditions[C]// Second International Seminar on Deep and High Stress Mining, Johannesburg, South Africa: The South African Institute of Mining and Metallurgy. 2004: 95-106.
    [35] Ortlepp W D. The design of support for the containment of rockburst damage in tunnels-An engineering approach[C]// Proceedings of the International Symposium on Rock Support. Rotterdam: A A Balkema Publishers, 1992: 593-609.
    [36] St-Pierre L, Hassani F P, Radziszewski P H, et al. Development of a dynamic model for a cone bolt[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(1): 107-114. doi: 10.1016/j.ijrmms.2008.05.005
    [37] Varden R, Lachenicht R, Player J R, et al. Development and implementation of the garford dynamic bolt at the Kanowna belle mine[C]// Proceedings of the 10th Underground Operators Conference. Paramus USA: Rinton Press, 2008: 95-104.
    [38] Charette F, Plouffe M. Roofex-results of laboratory testing of a new concept of yieldable tendon[C]// Proceedings of the 4th International Seminar on Deep and High Stress Mining. Perth Australian: Australian Centre for Geomechanics, 2007: 395-404.
    [39] 宫伟力, 孙雅星, 高霞, 等. 基于落锤冲击试验的恒阻大变形锚杆动力学特性[J]. 岩石力学与工程学报, 2018, 37(11): 2498-2509. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201811008.htm

    Gong Weili, Sun Yaxing, Gao Xia, et al. Dynamic characteristics of constant-resistance-large-deformation bolts based on weight-dropping tests[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(11): 2498-2509. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201811008.htm
    [40] Li C C. Performance of D-bolts under static loading[J]. Rock Mechanics and Rock Engineering, 2012, 45(2): 183-192. doi: 10.1007/s00603-011-0198-6
    [41] Knox G, Berghorst A, Bruin P D. An empirical comparison between new and existing laboratory-based dynamic sample configurations[C]// Caving 2018. Perth Australian: Australian Centre for Geomechanics, 2018: 747-758.
    [42] 王琦, 何满潮, 许硕, 等. 恒阻吸能锚杆力学特性与工程应用[J]. 煤炭学报, 2021. doi: 10.13225/j.cnki.jccs.2021.0383.

    Wang Qi, He Manchao, Xu Shuo, et al. Mechanical Properties and Engineering Application of Constant Resistance Energy Absorbing Bolt[J]. Journal of China Coal Society, 2021. doi:10.13225/j.cnki.jccs. 2021.0383.
    [43] He M C, Wang Q, Wu Q Y. Innovation and future of mining rock mechanics[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2021, 13(1): 1-21. doi: 10.1016/j.jrmge.2020.11.005
    [44] 何满潮, 夏敏, 王琦, 等. NPR锚索材料及其生产方法: 中国, CN202010544758.7[P]. 2020-10-13.
    [45] Turner M H, Player J R. Seismicity at Big Bell Mine[C]// MASSMIN 2000 Conference, Brisbane, Australia, 2000: 791-797.
    [46] 杨晓杰, 庞杰文, 张保童, 等. 回风石门软岩巷道变形破坏机理及其支护对策[J]. 煤炭学报, 2014, 39(6): 1000-1008. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201406004.htm

    Yang Xiaojie, Pang Jiewen, Zhang Baotong, et al. Deformation and failure mechanism and support measures of the soft rock roadway in the air return laneway[J]. Journal of China Coal Society, 2014, 39(6): 1000-1008. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201406004.htm
    [47] Kang H P, Yang J H, Meng X Z. Tests and analysis of mechanical behaviours of rock bolt components for China's coal mine roadways[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2015, 7(1): 14-26. doi: 10.1016/j.jrmge.2014.12.002
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  81
  • HTML全文浏览量:  37
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-17
  • 修回日期:  2021-06-21
  • 刊出日期:  2021-10-01

目录

    /

    返回文章
    返回