留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相邻巷道围岩动态裂纹起裂与扩展行为研究

杨立云 张飞 陈思羽 胡桓宁 汪自扬 林长宇

杨立云, 张飞, 陈思羽, 胡桓宁, 汪自扬, 林长宇. 相邻巷道围岩动态裂纹起裂与扩展行为研究[J]. 矿业科学学报, 2021, 6(5): 558-568. doi: 10.19606/j.cnki.jmst.2021.05.005
引用本文: 杨立云, 张飞, 陈思羽, 胡桓宁, 汪自扬, 林长宇. 相邻巷道围岩动态裂纹起裂与扩展行为研究[J]. 矿业科学学报, 2021, 6(5): 558-568. doi: 10.19606/j.cnki.jmst.2021.05.005
Yang Liyun, Zhang Fei, Chen Siyu, Hu Huanning, Wang Ziyang, Lin Changyu. Study on dynamic crack initiation and propagation behavior of surrounding rock of adjacent roadway[J]. Journal of Mining Science and Technology, 2021, 6(5): 558-568. doi: 10.19606/j.cnki.jmst.2021.05.005
Citation: Yang Liyun, Zhang Fei, Chen Siyu, Hu Huanning, Wang Ziyang, Lin Changyu. Study on dynamic crack initiation and propagation behavior of surrounding rock of adjacent roadway[J]. Journal of Mining Science and Technology, 2021, 6(5): 558-568. doi: 10.19606/j.cnki.jmst.2021.05.005

相邻巷道围岩动态裂纹起裂与扩展行为研究

doi: 10.19606/j.cnki.jmst.2021.05.005
基金项目: 

国家自然科学基金 51974316

国家重点研发计划 2016YFC0600903

详细信息
    作者简介:

    杨立云(1983—),男,河北邢台人,博士,教授,主要从事岩土工程、断裂力学方面的研究工作。Tel:13811536096,E-mail:yangly@cumtb.edu.cn

  • 中图分类号: O346;TU45

Study on dynamic crack initiation and propagation behavior of surrounding rock of adjacent roadway

  • 摘要: 为研究冲击荷载下相邻巷道截面周边岩体动态裂纹起裂与扩展的力学行为特性,借助新型数字激光动态焦散线实验系统,使用类岩石介质材料PMMA制作双截面巷道模型进行冲击实验,并基于ABAQUS数值模拟平台对裂纹扩展过程进行仿真。结果表明:当相邻截面预制裂纹偏转角度分别为45°、22.5°、0°、-22.5°、-45°时,裂纹起裂时的动态应力强度因子不同。裂纹起裂后的动态应力强度因子变化有一个“平台段”,持续时间为160 μs左右; 当右侧裂纹逐渐远离左侧截面时,左侧裂纹起裂后的扩展速度会有所增大。双截面巷道动态裂纹起裂扩展时,相邻截面会在一定程度上影响动态应力强度因子和扩展速度。右侧裂纹尖端靠近左侧裂纹时,后者的起裂韧度降低,即较容易起裂。
  • 图  1  应力集中区域光线分布示意图

    Figure  1.  Schematic diagram of light distribution in stress concentration area

    图  2  光线映射关系示意图

    Figure  2.  Schematic diagram of light mapping relationship

    图  3  新型数字激光动态焦散线实验系统

    Figure  3.  New digital laser dynamic caustics experimental system

    图  4  试件示意图

    Figure  4.  Schematic diagram of specimen

    图  5  试件断裂效果

    Figure  5.  Fracture effect diagram of specimen

    图  6  裂纹尖端焦散斑

    Figure  6.  Caustic speckle at crack tip

    图  7  不同试件动态应力强度因子变化

    Figure  7.  Change of dynamic stress intensity factor

    图  8  应力强度因子KILd和平台段持续时间tcon的关系

    Figure  8.  The relationship between the stress intensity factorKILd and the plateau duration tcon

    图  9  裂纹起裂所需时间和扩展速度

    Figure  9.  Crack initiation time and propagation velocity

    图  10  应力波传播示意图

    Figure  10.  Schematic diagram of stress wave propagation

    图  11  应力波对裂纹尖端作用分解

    Figure  11.  Decomposition of stress wave on crack tip

    图  12  正应力σθ和剪应力τθ分解系数随θ变化关系

    Figure  12.  The decomposition coefficient of σθ and τθ with θ

    图  13  动态裂纹扩展示意图

    Figure  13.  Schematic diagram of dynamic crack propagation

    表  1  裂纹扩展轨迹曲折度

    Table  1.   Crack propagation path tortuosity

    试件 L0/cm Lt/cm 轨迹曲折度
    SA 4.50 4.54 1.008
    SB 4.50 4.65 1.034
    SC 4.50 4.60 1.022
    SD 4.50 4.72 1.048
    SE 4.50 4.62 1.026
    下载: 导出CSV
  • [1] 周磊, 朱哲明, 应鹏, 等. 巷道内Ⅰ型及Ⅰ/Ⅱ复合型裂纹在冲击载荷作用下的断裂行为分析[J]. 振动与冲击, 2018, 37(13): 210-217. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201813034.htm

    Zhou Lei, Zhu Zheming, Ying Peng, et al. Fracture behavior analysis for mode I and multi-mode Ⅰ/Ⅱ cracks in a tunnel under impact loads[J]. Journal of Vibration and Shock, 2018, 37(13): 210-217. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201813034.htm
    [2] 周磊, 朱哲明, 董玉清, 等. 动态加载率对巷道内裂纹扩展速度及动态起裂韧度的影响[J]. 振动与冲击, 2019, 38(4): 129-136. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201904021.htm

    Zhou Lei, Zhu Zheming, Dong Yuqing, et al. Effect of dynamic loading rate on crack propagation velocity and dynamic fracture toughness in tunnels[J]. Journal of Vibration and Shock, 2019, 38(4): 129-136. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201904021.htm
    [3] 周磊, 朱哲明, 董玉清, 等. 冲击加载下巷道内裂纹的扩展特性及破坏行为[J]. 爆炸与冲击, 2018, 38(4): 785-794. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201804010.htm

    Zhou Lei, Zhu Zheming, Dong Yuqing, et al. Propagation characteristics and failure behaviors of crack in tunnel under impact loads[J]. Explosion and Shock Waves, ,2018, 38(4): 785-794. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201804010.htm
    [4] 王蒙, 朱哲明, 王雄. 冲击荷载作用下的Ⅰ/Ⅱ复合型裂纹扩展规律研究[J]. 岩石力学与工程学报, 2016, 35(7): 1323-1332. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201607003.htm

    Wang Meng, Zhu Zheming, Wang Xiong. The growth of mixed-mode Ⅰ/Ⅱ crack under impacting loads[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(7): 1323-1332. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201607003.htm
    [5] 王蒙, 朱哲明, 胡荣. 基于SCSCC试样的岩石复合型裂纹动态扩展特征研究[J]. 四川大学学报: 工程科学版, 2016, 48(2): 57-65. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201602009.htm

    Wang Meng, Zhu Zheming, Hu Rong. Rock experiments study of crack propagation under Ⅰ mode and Ⅰ-Ⅱ mixed-mode dynamic loading using SCSCC specimens[J]. Journal of Sichuan University: Engineering Science Edition, 2016, 48(2): 57-65. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201602009.htm
    [6] 杨仁树, 苏洪, 龚悦, 等. 冲击作用下静止裂纹与运动裂纹相互作用的实验研究[J]. 振动与冲击, 2018, 37(8): 107-112. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201808017.htm

    Yang Renshu, Su Hong, Gong Yue, et al. Experimental study of interaction between stationary crack and moving crack under impact[J]. Journal of Vibration and Shock, 2018, 37(8): 107-112. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201808017.htm
    [7] 杨仁树, 王雁冰, 侯丽冬, 等. 冲击荷载下缺陷介质裂纹扩展的DLDC实验[J]. 岩石力学与工程学报, 2014, 33(10): 1971-1976. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201410004.htm

    Yang Renshu, Wang Yanbing, Hou Lidong, et al. DLDC experiment on crack propagation in defective medium under impact loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(10): 1971-1976. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201410004.htm
    [8] 杨仁树, 苏洪, 陈程, 等. 相互贯通裂纹动态断裂的实验研究[J]. 振动与冲击, 2017, 36(13): 134-139.

    Yang Renshu, Su Hong, Chen Cheng, et al. Tests for dynamic fracture of interconnected cracks[J]. Journal of Vibration and Shock, 2017, 36(13): 134-139.
    [9] 杨立云, 张勇进, 孙金超, 等. 偏置裂纹对含双裂纹PMMA试件动态断裂影响效应研究[J]. 矿业科学学报, 2017, 2(4): 330-335. http://kykxxb.cumtb.edu.cn/article/id/80

    Yang Liyun, Zhang Yongjin, Sun Jinchao, et al. The effect of offset distance on dynamic fracture behavior of PMMA with double cracks[J]. Journal of Mining Science and Technology, 2017, 2(4): 330-335. http://kykxxb.cumtb.edu.cn/article/id/80
    [10] 许鹏, 陈程, 郭洋, 等. 含垂直层理介质在切缝药包爆破下裂纹扩展行为的实验研究[J]. 矿业科学学报, 2019, 4(6): 498-505. http://kykxxb.cumtb.edu.cn/article/id/251

    Xu Peng, Chen Cheng, Guo Yang, et al. Experimental study on crack propagation of slit charge blasting in media with vertical bedding plane[J]. Journal of Mining Science and Technology, 2019, 4(6): 498-505. http://kykxxb.cumtb.edu.cn/article/id/251
    [11] 郭东明, 刘康, 罗浪, 等. 爆炸载荷下邻近硐室迎爆侧原先裂纹扩展机理研究[J]. 矿业科学学报, 2017, 2(4): 348-356. http://kykxxb.cumtb.edu.cn/article/id/82

    Guo Dongming, Liu Kang, Luo Lang, et al. Growth mechanism of original crack facing the blasting side of adjacent tunnel under the blasting load[J]. Journal of Mining Science and Technology, 2017, 2(4): 348-356. http://kykxxb.cumtb.edu.cn/article/id/82
    [12] 李清, 曹怀建, 杨鸣泽, 等. 含偏置裂纹材料断裂韧性的焦散线实验测试[J]. 矿业科学学报, 2017, 2(3): 243-250. http://kykxxb.cumtb.edu.cn/article/id/69

    Li Qing, Cao Huaijian, Yang Mingze, et al. Experimental investigation on dynamic fracture toughnessof offset crack material using caustic method[J]. Journal of Mining Science and Technology, 2017, 2(3): 243-250. http://kykxxb.cumtb.edu.cn/article/id/69
    [13] Xu Lihui, Ma Meng. Study of the characteristics of train-induced dynamic SIFs of tunnel lining cracks based on the modal superposition approach[J]. Engineering Fracture Mechanics, 2020, 233: 107069. doi: 10.1016/j.engfracmech.2020.107069
    [14] Wei Chao, Li Yong, Zhu Weishen, et al. Experimental observation and numerical investigation on propagation and coalescence process of multiple flaws in rock-like materials subjected to hydraulic pressure and far-field stress[J]. Theoretical and Applied Fracture Mechanics, 2020, 108: 102603. doi: 10.1016/j.tafmec.2020.102603
    [15] Huang Da, Li Bin, Ma Wenzhu, et al. Effects of bedding planes on fracture behavior of sandstone under semi-circular bending test[J]. Theoretical and Applied Fracture Mechanics, 2020, 108: 102625. doi: 10.1016/j.tafmec.2020.102625
    [16] Zhao Yi, Bi Jing, Zhou Xiaoping. Quantitative analysis of rockburst in the surrounding rock masses around deep tunnels[J]. Engineering Geology, 2020, 273: 105669. doi: 10.1016/j.enggeo.2020.105669
    [17] Han Haoyu, Fukuda Daisuke, Liu Hongyan, et al. FDEM simulation of rock damage evolution induced by contour blasting in the bench of tunnel at deep depth[J]. Tunnelling and Underground Space Technology, 2020, 103: 103495. doi: 10.1016/j.tust.2020.103495
    [18] 杨立云, 杨仁树, 许鹏. 新型数字激光动态焦散线实验系统及其应用[J]. 中国矿业大学学报, 2013, 42(2): 188-194. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201302004.htm

    Yang Lliyun, Yang Renshu, Xu Peng. Caustics method combined with laser & digital high-speed camera and its applications[J]. Journal of China University of Mining & Technology, 2013, 42(2): 188-194. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201302004.htm
    [19] Tang Zhili, Yao Wei, Zhang Junchen, et al. Experimental evaluation of PMMA simulated tunnel stability under dynamic disturbance using digital image correlation[J]. Tunnelling and Underground Space Technology, 2019, 92: 103039. doi: 10.1016/j.tust.2019.103039
    [20] Gee B, Parchei-Esfahani M, Gracie R. XFEM simulation of a mixed-mode fracture experiment in PMMA[J]. Engineering Fracture Mechanics, 2020, 229: 106945. doi: 10.1016/j.engfracmech.2020.106945
    [21] Zhou Xiaoping, Fu Liang, Ju Wang, et al. An experimental study of the mechanical and fracturing behavior in PMMA specimen containing multiple 3D embedded flaws under uniaxial compression[J]. Theoretical and Applied Fracture Mechanics, 2019, 101: 207-216. doi: 10.1016/j.tafmec.2019.03.002
    [22] 李清, 薛耀东, 于强, 等. 含预制裂纹的悬臂梁-柱试件冲击断裂实验[J]. 矿业科学学报, 2018, 3(2): 139-147. http://kykxxb.cumtb.edu.cn/article/id/131

    Li Qing, XueYaodong, Yu Qiang, et al. Experimental study on impact fracture of cantilever beam-column specimen with prefabricated crack[J]. Journal of Mining Science and Technology, 2018, 3(2): 139-147. http://kykxxb.cumtb.edu.cn/article/id/131
    [23] 杨仁树, 肖成龙, 丁晨曦, 等. 空孔与运动裂纹相互作用的动焦散线实验研究[J]. 爆炸与冲击, 2020, 40(5): 16-24. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ202005002.htm

    Yang Renshu, Xiao Chenglong, Ding Chenxi, et al. Experimental study on dynamic caustics of interaction between void and running crack[J]. Explosion and Shock Waves, 2020, 40(5): 16-24. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ202005002.htm
    [24] 赵勇, 肖成龙, 杨立云, 等. 动静裂纹作用偏置效应的动焦散冲击实验[J]. 爆炸与冲击, 2020, 40(7): 85-96. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ202007009.htm

    Zhao Yong, Xiao Chenglong, Yang Liyun, et al. Dynamic caustics experiments on offset effects between dynamic and static cracks[J]. Explosion and Shock Waves, 2020, 40(7): 85-96. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ202007009.htm
    [25] Rossmanith H P. Rock fracture mechanics[M]. Vienna: Springer, 1983.
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  79
  • HTML全文浏览量:  47
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-04
  • 修回日期:  2021-05-24
  • 刊出日期:  2021-10-01

目录

    /

    返回文章
    返回