留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

饮用水深度处理用煤基活性炭吸附性能表征

万超然 解强 刘德钱 周逸寰 吴昊天 杨帅

万超然, 解强, 刘德钱, 周逸寰, 吴昊天, 杨帅. 饮用水深度处理用煤基活性炭吸附性能表征[J]. 矿业科学学报, 2021, 6(4): 487-496. doi: 10.19606/j.cnki.jmst.2021.04.014
引用本文: 万超然, 解强, 刘德钱, 周逸寰, 吴昊天, 杨帅. 饮用水深度处理用煤基活性炭吸附性能表征[J]. 矿业科学学报, 2021, 6(4): 487-496. doi: 10.19606/j.cnki.jmst.2021.04.014
Wan Chaoran, Xie Qiang, Liu Deqian, Zhou Yihuan, Wu Haotian, Yang Shuai. Adsorption capacity of coal-based activated carbon in advanced treatment of drinking water[J]. Journal of Mining Science and Technology, 2021, 6(4): 487-496. doi: 10.19606/j.cnki.jmst.2021.04.014
Citation: Wan Chaoran, Xie Qiang, Liu Deqian, Zhou Yihuan, Wu Haotian, Yang Shuai. Adsorption capacity of coal-based activated carbon in advanced treatment of drinking water[J]. Journal of Mining Science and Technology, 2021, 6(4): 487-496. doi: 10.19606/j.cnki.jmst.2021.04.014

饮用水深度处理用煤基活性炭吸附性能表征

doi: 10.19606/j.cnki.jmst.2021.04.014
基金项目: 

国家重点基础研究发展计划 2014CB238905

详细信息
    作者简介:

    万超然(1990—),女,四川绵阳人,博士研究生,主要从事净水活性炭方面的研究工作。Tel:18501302856,E-mail:chaoran_wan@126.com

    通讯作者:

    解强(1965—),男,安徽淮南人,教授,博士生导师,主要从事煤化学、煤化工、多孔炭材料方面的教学与研究工作。Tel:010-62331014,E-mail:dr-xieq@cumtb.edu.cn

  • 中图分类号: TQ424.1

Adsorption capacity of coal-based activated carbon in advanced treatment of drinking water

  • 摘要: 活性炭是臭氧-生物活性炭(O3-BAC)饮用水深度净化工艺中的核心材料,准确评价活性炭的吸附性能是活性炭选型的基础。本研究采制我国4种典型商品煤基活性炭样品,同时选取一种木质炭作为对比,测定炭样的碘值、亚甲蓝值、焦糖脱色率等常规吸附性能指标以及对丹宁酸(TA)和腐殖酸(HA)的静态吸附容量;用快速小柱实验(RSSCT)测定活性炭吸附含TA和HA水样的穿透曲线以评价活性炭动态吸附性能。此外,分别利用物理吸附仪和扫描电镜联用能谱仪表征活性炭孔结构和表面微观形貌,采用弗兰克尔-哈尔西-希尔方法计算分形维数以表征活性炭表面粗糙度。结果表明,碘值、亚甲蓝值、焦糖脱色率以及TA和HA吸附量与活性炭的孔发育程度明显相关;在RSSCT评价中无烟煤基活性炭具有最佳的动态吸附性能,表明活性炭动态吸附性能与活性炭孔结构相关性较小,而与表面粗糙度具有一定的关联。利用活性炭表面粗糙度指标初步筛选、再经HA的RSSCT穿透实验优选,可选出性能优良的饮用水深度处理用活性炭。
  • 图  1  活性炭穿透实验装置示意图

    1—玻璃丝棉和玻璃珠;2—活性炭;3—蠕动泵;4—水箱

    Figure  1.  Apparatus for rapid small-scale column test (RSSCT) of activated carbon

    图  2  活性炭样品吸-脱附等温线与孔结构

    Figure  2.  Nitrogen adsorption-desorption isotherms and pore structure of activated carbon samples

    图  3  活性炭样品的扫描电镜图

    Figure  3.  Scanning electron microscope images of activated carbon samples

    图  4  活性炭样品表面灰分SEM-EDS图

    Figure  4.  SEM-EDS images of ash composition of the activated carbon surface

    图  5  活性炭样品TA和HA吸附等温线

    Figure  5.  HA and TA adsorption isotherms of activated carbon samples

    图  6  活性炭对TA和HA的穿透曲线

    Figure  6.  Breaking curves of activated carbon samples of TA and HA

    图  7  活性炭样品累积孔容与各项吸附性能指标线性拟合系数

    I2—碘值;MB—亚甲蓝值;Caramel—焦糖脱色率;Iso-HA—腐殖酸静态吸附容量;Iso-TA—丹宁酸静态吸附容量;RSSCT-HA—腐殖酸动态穿透床体积数;RSSCT-TA—丹宁酸动态穿透床体积数

    Figure  7.  Liner correlation coefficients of cumulative pore volume and evaluation indexes of activated carbon samples

    表  1  活性炭对TA和HA吸附实验用小柱尺寸及实验参数

    Table  1.   Parameters of column test for TA and HA adsorption

    小柱尺寸 实验条件参数 TA HA
    直径/cm 0.50 流速/(m·h-1) 10.95 2.74
    炭层高度/cm 8.33 活性炭粒径/mm 0.21 0.21
    柱长/cm 14.00 空床接触时间/min 0.46 1.83
    进水口直径/cm 0.30 进水浓度/(mg·L-1) 9 5
    下载: 导出CSV

    表  2  活性炭样品的吸附性能指标

    Table  2.   Adsorption capacity of activated carbon samples

    活性炭编号(原料) AC-1(长焰煤) AC-2(长焰煤) AC-3(无烟煤) AC-4(褐煤) AC-5(椰壳)
    碘值 1 062 899 979 1 001 1 131
    亚甲蓝值 220 166 198 206 204
    焦糖脱色率/% 66.55 33.65 15.04 68.49 4.72
    下载: 导出CSV

    表  3  活性炭样品TA和HA吸附等温线Langmuir和Freundlich方程拟合参数

    Table  3.   Langmuir and Freundlich adsorption isotherms fitting parameters for activated carbon samples on TA and HA

    样品 TA HA
    KL R2 RL KF RF2 n KL R2 RL KF RF2 n
    AC-1 0.057 1 0.990 0 0.02~0.30 24.723 9 0.952 7 3.001 0 0.003 3 0.942 6 0.37~0.94 1.769 2 0.993 3 1.414 9
    AC-2 0.031 9 0.996 4 0.03~0.44 12.532 9 0.987 0 3.189 3 0.004 5 0.974 3 0.31~0.92 1.456 7 0.986 4 1.526 3
    AC-3 0.130 9 0.999 1 0.01~0.16 12.823 8 0.808 0 5.308 4 0.004 1 0.924 3 0.33~0.92 1.573 3 0.975 7 1.597 4
    AC-4 0.054 0 0.993 5 0.02~0.32 21.618 7 0.979 2 3.425 7 0.001 1 0.753 7 0.64~0.98 0.632 9 0.991 6 1.147 4
    AC-5 0.030 5 0.995 6 0.04~0.45 10.506 7 0.918 5 3.628 2 0.005 5 0.971 9 0.27~0.90 2.076 7 0.987 6 1.721 9
    注:RL=1/(1 +KLC0)
    下载: 导出CSV

    表  4  活性炭对TA和HA快速小柱实验结果

    Table  4.   RSSCT results of activated carbon samples on TA and HA adsorption

    活性炭 TA HA
    穿透时间/min 吸附容量/(mg·g-1) 利用率/% 穿透时间/min 吸附容量/(mg·g-1) 利用率/%
    AC-1 10 5.3 1.4 16 0.187 10.3
    AC-2 14 6.7 2.3 14 0.122 22.6
    AC-3 17 4.6 2.5 39 0.453 6.0
    AC-4 10 1.9 2.9 18 0.299 4.2
    AC-5 3 1.4 1.0 12 0.100 16.7
    下载: 导出CSV

    表  5  活性炭样品的分形维数

    Table  5.   Fractal dimension of activated carbon samples

    活性炭编号 AC-1 AC-2 AC-3 AC-4 AC-5
    分形维数D 2.829 2.920 2.939 2.829 2.818
    下载: 导出CSV
  • [1] Dong S, Liu L J, Zhang Y X, et al. Occurrence and succession of bacterial community in O3/BAC process of drinking water treatment[J]. International Journal of Environmental Research and Public Health, 2019, 16(17): 3112. doi: 10.3390/ijerph16173112
    [2] 兰亚琼, 刘锐, 马正杰, 等. 臭氧-生物活性炭对微污染原水中典型持久性有机物的去除效果[J]. 环境科学, 2018, 39(12): 5541-5549. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201812029.htm

    Lan Yaqiong, Liu Rui, Ma Zhengjie, et al. Ozone-biological activated carbon for advanced removal of typical persistent organic pollutants from micro-polluted source water in the Yangtze delta region[J]. Environmental Science, 2018, 39(12): 5541-5549. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201812029.htm
    [3] Ibn K, Sanciolo P, Gray S, et al. Comparison of the effects of ozone, biological activated carbon (BAC) filtration and combined ozone-BAC pre-treatments on the microfiltration of secondary effluent[J]. Separation and Purification Technology, 2019, 215: 308-316. doi: 10.1016/j.seppur.2019.01.005
    [4] 蔡广强, 张金松, 刘彤宙, 等. O3-BAC深度处理工艺中细菌群落时空分布及动态变化规律[J]. 环境科学学报, 2020, 40(11): 3830-3839. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX202011003.htm

    Cai Guangqiang, Zhang Jinsong, Liu Tongzhou, et al. Spatiotemporal distribution and dynamic variation of bacterial communities in the O3-BAC advanced treatment process[J]. Acta Scientiae Circumstantiae, 2020, 40(11): 3830-3839. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX202011003.htm
    [5] Xu D L, Bai L M, Tang X B, et al. A comparison study of sand filtration and ultrafiltration in drinking water treatment: Removal of organic foulants and disinfection by-product formation[J]. Science of the Total Environment, 2019, 691: 322-331. doi: 10.1016/j.scitotenv.2019.07.071
    [6] Li Z, Sahle-Demessie E, Hassan A A, et al. Effects of source and seasonal variations of natural organic matters on the fate and transport of CeO2 nanoparticles in the environment[J]. Science of the Total Environment, 2017, 609: 1616-1626. doi: 10.1016/j.scitotenv.2017.07.154
    [7] 侯嫔, 岳烨, 张犇, 等. 荞麦壳基活性炭的制备及其性能研究[J]. 矿业科学学报, 2020, 5(1): 122-130. http://kykxxb.cumtb.edu.cn/article/id/272

    Hou Pin, Yue Ye, Zhang Ben, et al. Preparation and properties of buckwheat shell-based activated carbon[J]. Journal of Mining Science and Technology, 2020, 5(1): 122-130. http://kykxxb.cumtb.edu.cn/article/id/272
    [8] 张巍, 常启刚, 应维琪, 等. 新型水处理活性炭选型技术[J]. 环境污染与防治, 2006, 28(7): 499-504. doi: 10.3969/j.issn.1001-3865.2006.07.006

    Zhang Wei, Chang Qigang, Ying Weichi, et al. New carbon selection method for water treatment applications[J]. Environmental Pollution & Control, 2006, 28(7): 499-504. doi: 10.3969/j.issn.1001-3865.2006.07.006
    [9] 张巍, 应维琪, 常启刚, 等. 水处理活性炭吸附性能指标的表征与应用[J]. 中国环境科学, 2007, 27(3): 289-294. doi: 10.3321/j.issn:1000-6923.2007.03.001

    Zhang Wei, Ying Weichi, Chang Qigang, et al. Adsorptive capacity indicator-based method of carbon selection for treatability[J]. China Environmental Science, 2007, 27(3): 289-294. doi: 10.3321/j.issn:1000-6923.2007.03.001
    [10] 刘德钱, 解强, 万超然, 等. 活性炭配炭的吸附性能及其与孔结构的关系[J]. 化工进展, 2019, 38(12): 5578-5586. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201912044.htm

    Liu Deqian, Xie Qiang, Wan Chaoran, et al. Adsorption properties of blending activated carbons and their relationship with pore structure[J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5578-5586. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201912044.htm
    [11] Kennedy A M, Reinert A M, Knappe D R U, et al. Full-and pilot-scale GAC adsorption of organic micropollutants[J]. Water Research, 2015, 68: 238-248. doi: 10.1016/j.watres.2014.10.010
    [12] Genz A, Baumgarten B, Goernitz M, et al. NOM removal by adsorption onto granular ferric hydroxide: Equilibrium, kinetics, filter and regeneration studies[J]. Water Research, 2008, 42(1/2): 238-248. http://europepmc.org/abstract/MED/17681584
    [13] 魏朝成, 于彩虹, 徐磊. 粉末活性炭预沉积强化超滤膜处理微污染水的效应研究[J]. 矿业科学学报, 2020, 5(4): 458-466. http://kykxxb.cumtb.edu.cn/article/id/311

    Wei Chaocheng, Yu Caihong, Xu Lei. Effect of powdered activated carbon deposited ultrafiltration membrane for enhanced micro-polluted water treatment[J]. Journal of Mining Science and Technology, 2020, 5(4): 458-466. http://kykxxb.cumtb.edu.cn/article/id/311
    [14] 高尚愚, 周建斌, 左宋林, 等. 碘值、亚甲基蓝及焦糖脱色力与活性炭孔隙结构的关系[J]. 南京林业大学学报, 1998, 22(4): 23-27. https://www.cnki.com.cn/Article/CJFDTOTAL-NJLY804.004.htm

    Gao Shangyu, Zhou Jianbin, Zou Songlin, et al. A study on the relationship between the iodine number, methylene blue adsorption, caramel adsorption and the pore structure of activated carbons[J]. Journal of Nanjing Forestry University, 1998, 22(4): 23-27. https://www.cnki.com.cn/Article/CJFDTOTAL-NJLY804.004.htm
    [15] 丁桓如, 张玉婷, 靳文广, 等. 给水处理中活性炭吸附性能筛选的新指标: 焦糖脱色率研究[J]. 工业水处理, 2012, 32(1): 1-5. doi: 10.3969/j.issn.1005-829X.2012.01.001

    Ding Huanru, Zhang Yuting, Jin Wenguang, et al. Caramel decolorization rate: a screening indicator of the activated carbon adsorption for capacity applied to the treatment of feed water[J]. Industrial Water Treatment, 2012, 32(1): 1-5. doi: 10.3969/j.issn.1005-829X.2012.01.001
    [16] Yang J S, Yuan D X, Weng T P. Pilot study of drinking water treatment with GAC, O3/BAC and membrane processes in Kinmen Island, Taiwan[J]. Desalination, 2010, 263(1/2/3): 271-278. http://www.cabdirect.org/abstracts/20103314339.html
    [17] Babi K G, Koumenides K M, Nikolaou A D, et al. Pilot study of the removal of THMs, HAAs and DOC from drinking water by GAC adsorption[J]. Desalination, 2007, 210(1/2/3): 215-224. http://www.sciencedirect.com/science/article/pii/S0011916407001828
    [18] Crittenden J C, Berrigan J K, Hand D W. Design of rapid small-scale adsorption tests for a constant diffusivity[J]. Journal of Water Pollution Control Federation, 1986, 58(4): 312-319. http://www.zhangqiaokeyan.com/ntis-science-report_other_thesis/020711225476.html
    [19] Poddar M. A review on the use of rapid small scale column test (RSSCT) on predicting adsorption of various contaminants[J]. IOSR Journal of Environmental Science, Toxicology and Food Technology, 2013, 3(1): 77-85. doi: 10.9790/2402-0317785
    [20] Sperlich A, Werner A, Genz A, et al. Breakthrough behavior of granular ferric hydroxide (GFH) fixed-bed adsorption filters: modeling and experimental approaches[J]. Water Research, 2005, 39(6): 1190-1198. doi: 10.1016/j.watres.2004.12.032
    [21] Cerminara P J, Sorial G A, Papadimas S P, et al. Effect of influent oxygen concentration on the GAC adsorption of VOCs in the presence of BOM[J]. Water Research, 1995, 29(2): 409-419. doi: 10.1016/0043-1354(94)00185-A
    [22] Crittenden J C, Trussell R R, Hand D W, et al. MWH's water treatment[M]. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012.
    [23] Donohue M D, Aranovich G L. Classification of Gibbs adsorption isotherms[J]. Advances in Colloid and Interface Science, 1998, 76/77: 137-152. doi: 10.1016/S0001-8686(98)00044-X
    [24] Wang Z H, Wang C Z, Yuan J J, et al. Adsorption characteristics of adsorbent resins and antioxidant capacity for enrichment of phenolics from two-phase olive waste[J]. Journal of Chromatography B, 2017, 1040: 38-46. doi: 10.1016/j.jchromb.2016.11.023
    [25] Weber T W, Chakravorti R K. Pore and solid diffusion models for fixed-bed adsorbers[J]. AIChE Journal, 1974, 20(2): 228-238. doi: 10.1002/aic.690200204
    [26] Li Z T, Liu D M, Cai Y D, et al. Adsorption pore structure and its fractal characteristics of coals by N2 adsorption/desorption and FESEM image analyses[J]. Fuel, 2019, 257: 116031. doi: 10.1016/j.fuel.2019.116031
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  391
  • HTML全文浏览量:  332
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-21
  • 修回日期:  2020-11-27
  • 刊出日期:  2021-08-01

目录

    /

    返回文章
    返回