留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铌酸钾钠无铅压电纳米棒阵列的制备

程丽乾 成慧 苗翼滢 孙怡文 张梓佩

程丽乾, 成慧, 苗翼滢, 孙怡文, 张梓佩. 铌酸钾钠无铅压电纳米棒阵列的制备[J]. 矿业科学学报, 2021, 6(4): 480-486. doi: 10.19606/j.cnki.jmst.2021.04.013
引用本文: 程丽乾, 成慧, 苗翼滢, 孙怡文, 张梓佩. 铌酸钾钠无铅压电纳米棒阵列的制备[J]. 矿业科学学报, 2021, 6(4): 480-486. doi: 10.19606/j.cnki.jmst.2021.04.013
Cheng Liqian, Cheng Hui, Miao Yiying, Sun Yiwen, Zhang Zipei. A study on synthesis of lead-free piezoelectric (K, Na)NbO3 nanorod arrays[J]. Journal of Mining Science and Technology, 2021, 6(4): 480-486. doi: 10.19606/j.cnki.jmst.2021.04.013
Citation: Cheng Liqian, Cheng Hui, Miao Yiying, Sun Yiwen, Zhang Zipei. A study on synthesis of lead-free piezoelectric (K, Na)NbO3 nanorod arrays[J]. Journal of Mining Science and Technology, 2021, 6(4): 480-486. doi: 10.19606/j.cnki.jmst.2021.04.013

铌酸钾钠无铅压电纳米棒阵列的制备

doi: 10.19606/j.cnki.jmst.2021.04.013
基金项目: 

国家自然科学基金青年基金 51602345

煤炭资源与安全开采国家重点实验室开放课题 SKLCRSM19KFA13

清华大学先进材料教育部重点实验室开放课题 XJCL201910

中央高校基本科研业务费专项资金 2016QJ01

北京市大学生创新训练 C201904407

详细信息
    作者简介:

    程丽乾(1986—),女,山西太原人,副教授,博士,主要从事压电材料的制备与性能方面的研究工作。Tel:010-62339175,E-mail:chenglq@cumtb.edu.cn

  • 中图分类号: TQ174

A study on synthesis of lead-free piezoelectric (K, Na)NbO3 nanorod arrays

  • 摘要: 针对一维KNN纳米结构的研究还存在取向生长较难、产物压电性能有待提高等问题,本文采用水热法与掺Nb的钛酸锶(SrTiO3)(NSTO)衬底辅助相结合的方式,通过控制水热反应温度、反应物五氧化二铌(Nb2O5)浓度以及水热反应时间实现高质量的KNN纳米棒阵列的取向生长。研究结果表明,在水热反应温度为190 ℃、Nb2O5浓度为40 mL/g、水热反应时间为18 h时,获得取向单一、结晶性好且压电响应明显的KNN纳米棒阵列。此研究可为无铅压电KNN晶体在微纳尺寸器件制备及能量回收等方面提供借鉴。
  • 图  1  不同温度下合成的KNN产物的SEM照片

    Figure  1.  SEM images of KNN products synthesized at different temperatures

    图  2  Nb2O5浓度为40 mL/g时不同反应时间下KNN产物的XRD图谱

    Figure  2.  XRD patterns of KNN products at different reaction time when the concentration of Nb2O5 is 40 mL

    图  3  在NSTO衬底上合成KNN纳米棒结构的生长机理示意图

    Figure  3.  Schematic diagram of the growth mechanism of KNN nanorods synthesized on NSTO substrate

    图  4  不同水热时间合成的KNN产物的SEM照片

    Figure  4.  SEM images of KNN products synthesized at different hydrothermal time

    图  5  不同Nb2O5浓度下合成的KNN产物的SEM照片

    Figure  5.  SEM images of KNN products synthesized at different Nb2O5 concentrations

    图  6  不同Nb2O5浓度下KNN产物的XRD图谱

    Figure  6.  XRD patterns of KNN products at different Nb2O5 concentrations

    图  7  KNN纳米棒的相位信号和压电响应

    Figure  7.  Phase signal and piezoelectric amplitude of KNN nanorods

  • [1] Wang Z L. Piezoelectric nanostructures: from growth phenomena to electric nanogenerators[J]. MRS Bulletin, 2007, 32(2): 109-116. doi: 10.1557/mrs2007.42
    [2] Qin Y, Wang X D, Wang Z L. Microfibre-nanowire hybrid structure for energy scavenging[J]. Nature, 2008, 451(7180): 809-813. doi: 10.1038/nature06601
    [3] Wang Z L. Piezotronic and piezophototronic effects[J]. Journal of Physical Chemistry Letters, 2010, 1(9): 1388-1393. doi: 10.1021/jz100330j
    [4] 程丽乾, 冯美, 张博然, 等. 一维无铅压电微纳材料在能量转换领域的研究进展[J]. 科技导报, 2017, 35(8): 54-59. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201708013.htm

    Cheng Liqian, Feng Mei, Zhang Boran, et al. Advances of one dimensional lead-free piezoelectric micro/nanomaterials in the field of energy conversion[J]. Science & Technology Review, 2017, 35(8): 54-59. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201708013.htm
    [5] Wu Wenzhuo, Wen Xiaonan, Wang Zhonglin. Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging[J]. Science, 2013, 340(6135): 952-957. doi: 10.1126/science.1234855
    [6] Zhang R, Lin L, Jing Q S, et al. Nanogenerator as an active sensor for vortex capture and ambient wind-velocity detection[J]. Energy & Environmental Science, 2012, 5(9): 8528-8533. http://pubs.rsc.org/en/content/articlelanding/2012/ee/c2ee22354f
    [7] Li Z T, Wang Z L. Air/liquid-pressure and heartbeat-driven flexible fiber nanogenerators as a micro/nano-power source or diagnostic Sensor[J]. Advanced Materials, 2011, 23(1): 84-89. doi: 10.1002/adma.201003161
    [8] Xu S, Qin Y, Xu C, et al. Self-powered nanowire devices[J]. Nature Nanotechnology, 2010, 5(5): 366-373. doi: 10.1038/nnano.2010.46
    [9] Wang D A, Ko H H. Piezoelectric energy harvesting from flow-induced vibration[J]. Journal of Micromechanics and Microengineering, 2010, 20(2): 025019. doi: 10.1088/0960-1317/20/2/025019
    [10] 李祥春, 张良, 聂百胜, 等. 不同应力和瓦斯压力下煤的相对介电常数变化规律[J]. 矿业科学学报, 2018, 3(4): 349-355. http://kykxxb.cumtb.edu.cn/article/id/158

    Li Xiangchun, Zhang Liang, Nie Baisheng, et al. Law of relative dielectric constant of coal under different stresses and gas pressures[J]. Journal of Mining Science and Technology, 2018, 3(4): 349-355. http://kykxxb.cumtb.edu.cn/article/id/158
    [11] 李祥春, 张良, 赵建飞, 等. 瓦斯气体吸附解吸过程煤变形响应特征[J]. 矿业科学学报, 2018, 3(1): 46-54. http://kykxxb.cumtb.edu.cn/article/id/120

    Li Xiangchun, Zhang Liang, Zhao Jianfei, et al. Coal deformation characteristics in gas adsorption and desorption[J]. Journal of Mining Science and Technology, 2018, 3(1): 46-54. http://kykxxb.cumtb.edu.cn/article/id/120
    [12] 竹涛, 刘恩彤, 王艳霞, 等. 煤矿乏风瓦斯变压吸附技术操作条件优化试验研究[J]. 矿业科学学报, 2016, 1(2): 98-104. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKX201602013.htm

    Zhu Tao, Liu Entong, Wang Yanxia, et al. Experimental study on working parameters optimization of vacuum pressure swing adsorption technology for ventilation air methane in coal mine[J]. Journal of Mining Science and Technology, 2016, 1(2): 196-202 https://www.cnki.com.cn/Article/CJFDTOTAL-KYKX201602013.htm
    [13] Ganeshkumar R, Cheah C W, Xu R Z, et al. A high output voltage flexible piezoelectric nanogenerator using porous lead-free KNbO3 nanofibers[J]. Applied Physics Letters, 2017, 111(1): 013905. doi: 10.1063/1.4992786
    [14] Liu B, Lu B, Chen X Q, et al. High-performance flexible piezoelectric energy harvester based on lead-free (Na0.5Bi0.5)TiO3-BaTiO3 piezoelectric nanofibers[J]. Journal of Materials Chemistry A, 2017, 5(45): 23634-23640. doi: 10.1039/C7TA07570G
    [15] Rørvik P M, Grande T, Einarsrud M A. One-dimensional nanostructures of ferroelectric perovskites[J]. Advanced Materials, 2011, 23(35): 4007-4034. doi: 10.1002/adma.201004676
    [16] Zhang Y D, Pan X M, Wang Z, et al. Fast and highly sensitive humidity sensors based on NaNbO3 nanofibers[J]. RSC Advances, 2015, 5(26): 20453-20458. doi: 10.1039/C5RA00205B
    [17] Li J F, Wang K, Zhu F Y, et al. (K, Na)NbO3-based lead-free piezoceramics: fundamental aspects, processing technologies, and remaining challenges[J]. Journal of the American Ceramic Society, 2013, 96(12): 3677-3696. doi: 10.1111/jace.12715
    [18] 晏伯武. KNN基无铅压电陶瓷材料制备的研究进展[J]. 压电与声光, 2019, 41(4): 517-523. doi: 10.3969/j.issn.1004-2474.2009.04.020

    Yan Bowu. Progress in preparation of KNN-basd lead-free piezoelectric ceramic material[J]. Piezoelectrics & Acoustooptics, 2009, 41(4): 517-523. doi: 10.3969/j.issn.1004-2474.2009.04.020
    [19] Saito Y, Takao H, Tani T, et al. Lead-free piezoceramics[J]. Nature, 2004, 432(7013): 84-87. doi: 10.1038/nature03028
    [20] Saito Y, Takao H. High performance lead-free piezoelectric ceramics in the (K, Na)NbO3-LiTaO3 solid solution system[J]. Ferroelectrics, 2006, 338(1): 17-32. doi: 10.1080/00150190600732512
    [21] Li J F, Wang K, Zhang B P, et al. Ferroelectric and piezoelectric properties of fine-grained Na0.5K0.5NbO3 lead-free piezoelectric ceramics prepared by spark plasma sintering[J]. Journal of the American Ceramic Society, 2006, 89(2): 706-709. doi: 10.1111/j.1551-2916.2005.00743.x
    [22] Xu K, Li J, Lü X, et al. Superior piezoelectric properties in potassium-sodium niobate lead-free ceramics[J]. Advanced Materials, 2016, 28(38): 8519-8523. doi: 10.1002/adma.201601859
    [23] Guo Yiping, Kakimoto K, Ohsato H. Phase transitional behavior and piezoelectric properties of (Na0.5K0.5) NbO3-LiNbO3 ceramics[J]. Applied Physics Letters, 2004, 85(18): 4121-4123. doi: 10.1063/1.1813636
    [24] Guo Yiping, Kakimoto K, Ohsato H. (Na0.5K0.5NbO3)-LiTaO3 lead-free piezoelectric ceramics[J]. Materials Letters, 2005, 59(2/3): 241-244. http://www.sciencedirect.com/science/article/pii/S0167577X04007037
    [25] Wang X P, Wu J G, Xiao D Q, et al. Giant piezoelectricity in potassium-sodium niobate lead-free ceramics[J]. Journal of the American Chemical Society, 2014, 136(7): 2905-2910. doi: 10.1021/ja500076h
    [26] Li P, Zhai J W, Shen B, et al. Ultrahigh piezoelectric properties in textured (K, Na)NbO3-based lead-free ceramics[J]. Advanced Materials, 2018, 30(8): 1705171. doi: 10.1002/adma.201705171
    [27] Hu J T, Odom T W, Lieber C M. Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes[J]. Accounts of Chemical Research, 1999, 32(5): 435-445. doi: 10.1021/ar9700365
    [28] Cheng L Q, Wang K, Li J F. Synthesis of highly piezoelectric lead-free (K, Na)NbO3 one-dimensional perovskite nanostructures[J]. Chemical Communications, 2013, 49(38): 4003-4005. doi: 10.1039/c3cc41371c
    [29] Cheng L Q, Wang K, Li J F, et al. Piezoelectricity of lead-free (K, Na)NbO3 nanoscale single crystals[J]. Journal of Materials Chemistry C, 2014, 2(43): 9091-9098. doi: 10.1039/C4TC01745E
    [30] Sun C, Xing X R, Chen J, et al. Hydrothermal synthesis of single crystalline (K, Na)NbO3 powders[J]. European Journal of Inorganic Chemistry, 2007, 2007(13): 1884-1888. doi: 10.1002/ejic.200601131
    [31] Wang Z, Gu H S, Hu Y, et al. Synthesis, growth mechanism and optical properties of (K, Na)NbO3 nanostructures[J]. CrystEngComm, 2010, 12(10): 3157-3162. doi: 10.1039/c000169d
    [32] Rørvik P M, Grande T, Einarsrud M A. One-dimensional nanostructures of ferroelectric perovskites[J]. Advanced Materials, 2011, 23(35): 4007-4034. doi: 10.1002/adma.201004676
    [33] He Y H, Wang Z, Hu X K, et al. Orientation-dependent piezoresponse and high-performance energy harvesting of lead-free (K, Na)NbO3 nanorod arrays[J]. RSC Advances, 2017, 7(28): 16908-16915. doi: 10.1039/C7RA01359K
    [34] 贺亚华. 铌酸钾钠无铅压电纳米棒阵列的可控生长、压电性能及其能量收集的研究[D]. 武汉: 湖北大学, 2017.
  • 加载中
图(7)
计量
  • 文章访问数:  373
  • HTML全文浏览量:  221
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-29
  • 修回日期:  2021-01-19
  • 刊出日期:  2021-08-01

目录

    /

    返回文章
    返回