留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

神东保德浅埋煤层覆岩裂隙带高度数值指标判别阈值及采高效应

郝宪杰 孙卓文 赵毅鑫 杨科 张村 张谦

郝宪杰, 孙卓文, 赵毅鑫, 杨科, 张村, 张谦. 神东保德浅埋煤层覆岩裂隙带高度数值指标判别阈值及采高效应[J]. 矿业科学学报, 2021, 6(4): 472-479. doi: 10.19606/j.cnki.jmst.2021.04.012
引用本文: 郝宪杰, 孙卓文, 赵毅鑫, 杨科, 张村, 张谦. 神东保德浅埋煤层覆岩裂隙带高度数值指标判别阈值及采高效应[J]. 矿业科学学报, 2021, 6(4): 472-479. doi: 10.19606/j.cnki.jmst.2021.04.012
Hao Xianjie, Sun Zhuowen, Zhao Yixin, Yang Ke, Zhang Cun, Zhang Qian. Threshold value of numerical index and mining height effect of overburden fracture zone height in Shendong Baode shallow coal seam[J]. Journal of Mining Science and Technology, 2021, 6(4): 472-479. doi: 10.19606/j.cnki.jmst.2021.04.012
Citation: Hao Xianjie, Sun Zhuowen, Zhao Yixin, Yang Ke, Zhang Cun, Zhang Qian. Threshold value of numerical index and mining height effect of overburden fracture zone height in Shendong Baode shallow coal seam[J]. Journal of Mining Science and Technology, 2021, 6(4): 472-479. doi: 10.19606/j.cnki.jmst.2021.04.012

神东保德浅埋煤层覆岩裂隙带高度数值指标判别阈值及采高效应

doi: 10.19606/j.cnki.jmst.2021.04.012
基金项目: 

国家自然科学基金 51804309

中国矿业大学(北京)越琦青年学者 2019QN02

杰出学者 2017JCB02

内蒙古自治区科技重大专项 2019GG140

详细信息
    作者简介:

    郝宪杰(1987—),男,山西孝义人,博士,副教授,主要从事地下工程稳定性的教学与研究工作。Tel:13521602708,E-mail:haoxianjie@cumtb.edu.cn

  • 中图分类号: TD325

Threshold value of numerical index and mining height effect of overburden fracture zone height in Shendong Baode shallow coal seam

  • 摘要: 覆岩裂隙带高度是研究覆岩变形破坏的重要指标,而现有单一指标无法反映空间采场围岩不同空间部位的破裂程度。本文以神东典型浅埋条件保德矿81505工作面为研究背景,基于室内实验对岩体破裂度进行了RFD阈值划分并构建相似模型和数值模型;基于围岩破坏度指标RFD提取了数值模拟中的最大破坏深度,并对比相似模拟结果研究了覆岩采动裂隙带发育高度规律及随采高的变化规律。结果表明,围岩破坏度指标RFD可以很好地评测神东典型浅埋条件下采动裂隙带的发育特征,裂隙带发育高度随采高的增大而持续增高,但增长速率逐渐减小。本研究为裂隙带分布破坏特征、矿压显现及安全开采提供理论支撑及技术依据。
  • 图  1  AGS-H 10 kN万能实验机

    Figure  1.  AGS-H10 kN universal testing machine

    图  2  无线自动加载测试装置

    Figure  2.  Wireless automatic loading test device

    图  3  保德矿煤样的应力-应变曲线

    Figure  3.  Stress strain curve of Baode coal sample

    图  4  数值模型结果与相似模型结果的对比

    Figure  4.  Comparison of numerical model results and similar model results

    图  5  100 m采深条件下不同采高对最大破坏高度的影响

    Figure  5.  Influence of different mining heights on maximum destructive height at 100m depth

    图  6  不同采高条件下工作面推进155m的IRFD=2区域示意图

    Figure  6.  Schematic diagram of the area of IRFD=2 when working face advancing 155m under different mining height conditions

    表  1  相似模拟及数值模拟中各岩层物理力学参数

    Table  1.   Physical and mechanical parameters of rock strata in similar simulation and numerical simulation

    岩性 厚度/m 密度/(kg·m-3) 体积模量/GPa 剪切模量/GPa 内聚力/MPa 内摩擦角/(°) 抗拉强度/MPa 弹性模量/GPa 泊松比 抗压强度/MPa
    中粒砂岩 11.31 2 560 7.71 5.31 1.74 36.87 2.49 12.95 0.22 48.36
    粉砂岩 2.20 2 600 9.48 7.11 2.35 38.96 3.35 17.07 0.20 69.8
    砂质泥岩 8.57 2 630 6.68 4.40 1.66 36.17 2.37 10.83 0.23 45.6
    砂质泥岩 8.33 2 630 6.68 4.40 1.66 36.17 2.37 10.83 0.23 45.57
    中粒砂岩 7.58 2 560 7.71 5.31 1.74 36.87 2.49 12.95 0.22 48.36
    中粒砂岩 10.65 2 560 7.71 5.31 1.74 36.87 2.49 12.95 0.22 48.36
    砂质泥岩 9.66 2 630 6.68 4.40 1.66 36.17 2.37 10.83 0.23 45.57
    中粗粒砂岩 14.50 2 610 6.32 4.74 1.66 36.97 2.37 11.37 0.20 46.23
    砂质泥岩 9.60 2 650 5.00 3.29 1.11 35.72 1.58 8.11 0.23 37.87
    8煤层 7.60 1 360 1.90 0.93 0.66 34.18 0.94 2.40 0.29 16.19
    泥岩 3.50 2 610 3.94 2.60 0.87 35.84 1.24 6.40 0.23 26.21
    中粗粒砂岩 36.50 2 570 7.87 6.40 2.07 37.89 2.96 15.11 0.18 57.86
    下载: 导出CSV

    表  2  采高对裂隙带高度的影响规律的数值模拟计算结果

    Table  2.   numerical simulation results of influence law of mining height on fracture zone height  m

    采深 采高 指标 推进
    55 85 105 135 155
    100 4 最大破坏高度 0 6.69 20.13 45.88 57.73
    6 10.36 16.97 37.84 54.12 64.70
    7.6 12.90 17.87 45.67 61.43 68.80
    8 13.75 18.80 47.71 63.57 69.20
    10 15.83 20.86 49.65 65.61 71.11
    下载: 导出CSV
  • [1] 许家林, 朱卫兵, 王晓振. 基于关键层位置的导水裂隙带高度预计方法[J]. 煤炭学报, 2012, 37(5): 762-769. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201205011.htm

    Xu Jialin, Zhu Weibing, Wang Xiaozhen. New method to predict the height of fractured water-conducting zone by location of key strata[J]. Journal of China Coal Society, 2012, 37(5): 762-769. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201205011.htm
    [2] 刘伟韬, 陈志兴, 张茂鹏. 覆岩裂隙带发育高度数值模拟和现场实测[J]. 矿业安全与环保, 2016, 43(1): 57-60. doi: 10.3969/j.issn.1008-4495.2016.01.015

    Liu Weitao, Chen Zhixing, Zhang Maopeng. Numerical simulation and site measurement of development height of fractured zone in overburden strata[J]. Mining Safety & Environmental Protection, 2016, 43(1): 57-60. doi: 10.3969/j.issn.1008-4495.2016.01.015
    [3] 胡小娟, 李文平, 曹丁涛, 等. 综采导水裂隙带多因素影响指标研究与高度预计[J]. 煤炭学报, 2012, 37(4): 613-620. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201204016.htm

    Hu Xiaojuan, Li Wenping, Cao Dingtao, et al. Index of multiple factors and expected height of fully mechanized water flowing fractured zone[J]. Journal of China Coal Society, 2012, 37(4): 613-620. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201204016.htm
    [4] 张通, 袁亮, 赵毅鑫, 等. 薄基岩厚松散层深部采场裂隙带几何特征及矿压分布的工作面效应[J]. 煤炭学报, 2015, 40(10): 2260-2268. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201510005.htm

    Zhang Tong, Yuan Liang, Zhao Yixin, et al. Distribution law of working face pressure under the fracture zone distribution characteristic of deep mining[J]. Journal of China Coal Society, 2015, 40(10): 2260-2268. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201510005.htm
    [5] 杨国勇, 陈超, 高树林, 等. 基于层次分析-模糊聚类分析法的导水裂隙带发育高度研究[J]. 采矿与安全工程学报, 2015, 32(2): 206-212. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201502006.htm

    Yang Guoyong, Chen Chao, Gao Shulin, et al. Study on the height of water flowing fractured zone based on analytic hierarchy process and fuzzy clustering analysis method[J]. Journal of Mining & Safety Engineering, 2015, 32(2): 206-212. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201502006.htm
    [6] 路晓晓. 近浅埋煤层导水裂缝带发育高度研究[D]. 西安: 西安科技大学, 2019.
    [7] 安丰存, 高琳, 孙海民. 浅埋厚煤层开采导水裂隙带发育高度判断方法[J]. 煤炭技术, 2015, 34(12): 107-109. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201512044.htm

    An Fengcun, Gao Lin, Sun Haimin. Method of determining height of water flowing fractured zone in shallow and thick coal seam[J]. Coal Technology, 2015, 34(12): 107-109. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201512044.htm
    [8] 张建石. 预测采煤导水裂隙带发育高度经验公式概述[J]. 采矿技术, 2018, 18(6): 86-88, 110. doi: 10.3969/j.issn.1671-2900.2018.06.028

    Zhang Jianshi. Overview of empirical formula for predicting development height of water flowing fractured zone in coal mining[J]. Mining Technology, 2018, 18(6): 86-88, 110. doi: 10.3969/j.issn.1671-2900.2018.06.028
    [9] 周泽, 赵维生, 朱川曲, 等. 基于塑性铰理论的导水裂隙带发育高度预判[J]. 地下空间与工程学报, 2018, 14(5): 1305-1312. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201805021.htm

    Zhou Ze, Zhao Weisheng, Zhu Chuanqu, et al. Prediction of water flowing fracture zone height based on the plastic hinge theory[J]. Chinese Journal of Underground Space and Engineering, 2018, 14(5): 1305-1312. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201805021.htm
    [10] 郝宪杰, 袁亮, 卢志国, 等. 考虑煤体非线性弹性力学行为的弹塑性本构模型[J]. 煤炭学报, 2017, 42(4): 896-901. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201704011.htm

    Hao Xianjie, Yuan Liang, Lu Zhiguo, et al. An elastic-plastic-soften constitutive model of coal considering its nonlinear elastic mechanical behavior[J]. Journal of China Coal Society, 2017, 42(4): 896-901. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201704011.htm
    [11] 巩跃斌, 华明国, 黄晓昇. 余吾煤业7602工作面"三带"发育规律相似材料模拟试验研究[J]. 煤炭科技, 2019, 40(4): 47-51. https://www.cnki.com.cn/Article/CJFDTOTAL-META201904015.htm

    Gong Yuebin, Hua Mingguo, Huang Xiaosheng. Simulation study on similar material for development of three zones on 7602 working face in Yuwu coal industry[J]. Coal Science & Technology Magazine, 2019, 40(4): 47-51. https://www.cnki.com.cn/Article/CJFDTOTAL-META201904015.htm
    [12] 冯超, 代革联. 采动条件下导水裂隙带发育高度预测[J]. 煤炭技术, 2019, 38(12): 94-98. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201912034.htm

    Feng Chao, Dai Gelian. Prediction of developmental height of water flowing fractured zone under mining conditions[J]. Coal Technology, 2019, 38(12): 94-98. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201912034.htm
    [13] 闫鑫, 侯恩科, 袁西亚, 等. 胡家河煤矿导水裂隙带发育高度研究[J]. 陕西煤炭, 2019, 38(1): 51-53, 132.

    Yan Xin, Hou Enke, Yuan Xiya, et al. Research on the development height of water flowing fracture zone in Hujiahe coal mine[J]. Shaanxi Coal, 2019, 38(1): 51-53, 132.
    [14] 郝宪杰, 冯夏庭, 江权, 等. 基于电镜扫描实验的柱状节理隧洞卸荷破坏机制研究[J]. 岩石力学与工程学报, 2013, 32(8): 1647-1655. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201308019.htm

    Hao Xianjie, Feng Xiating, Jiang Quan, et al. Research on unloading failure mechanism of columnar jointed rock mass in tunnel based on scanning electron microscopy experiments[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(8): 1647-1655. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201308019.htm
    [15] 申涛. 榆神矿区2-2煤层开采导水裂隙带发育规律研究[D]. 西安: 西安科技大学, 2019.
    [16] 杜家发, 李文平, 杨志. 张家峁煤矿N15203工作面浅埋煤层导水裂隙带发育特征[J]. 金属矿山, 2019(10): 133-139. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201910022.htm

    Du Jiafa, Li Wenping, Yang Zhi. Development characteristics of water-conducting fractured zone in shallow coal seam of N15203 working face in Zhangjiamao coal mine[J]. Metal Mine, 2019(10): 133-139. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201910022.htm
    [17] 李家卓, 方庆河, 谭文峰, 等. 覆岩裂隙带发育高度数值模拟与探测[J]. 金属矿山, 2011(6): 42-45. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201106016.htm

    Li Jiazhuo, Fang Qinghe, Tan Wenfeng, et al. Numerical simulation and detection study on the height of water flowing fractured zone in overburden strata[J]. Metal Mine, 2011(6): 42-45. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201106016.htm
    [18] 田成林, 宁建国, 谭云亮, 等. 多次采动条件下浅埋覆岩裂隙带发育规律[J]. 煤矿安全, 2014, 45(11): 45-47, 52. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201411013.htm

    Tian Chenglin, Ning Jianguo, Tan Yunliang, et al. Shallow overburden rock fracture zone development law under many mining conditions[J]. Safety in Coal Mines, 2014, 45(11): 45-47, 52. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201411013.htm
    [19] 岳勃. 开采覆岩裂隙带发育高度实测应用[J]. 山东煤炭科技, 2020(2): 142-144. doi: 10.3969/j.issn.1005-2801.2020.02.054

    Yue Bo. Practical measurement and application of development height of overburden fracture zone[J]. Shandong Coal Science and Technology, 2020(2): 142-144. doi: 10.3969/j.issn.1005-2801.2020.02.054
    [20] 郝宪杰, 许家林, 朱卫兵, 等. 高承压松散含水层下支架合理工作阻力的确定[J]. 采矿与安全工程学报, 2010, 27(3): 416-420. doi: 10.3969/j.issn.1673-3363.2010.03.023

    Hao Xianjie, Xu Jialin, Zhu Weibing, et al. Determination of reasonable support resistance when mining under unconsolidated highly-pressured confined aquifer[J]. Journal of Mining & Safety Engineering, 2010, 27(3): 416-420. doi: 10.3969/j.issn.1673-3363.2010.03.023
    [21] 李淑军. 柠条塔矿近距离煤层群开采覆岩破坏及裂隙带发育高度研究[D]. 西安: 西安科技大学, 2019.
    [22] 李振华, 许延春, 李龙飞, 等. 基于BP神经网络的导水裂隙带高度预测[J]. 采矿与安全工程学报, 2015, 32(6): 905-910. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201506007.htm

    Li Zhenhua, Xu Yanchun, Li Longfei, et al. Forecast of the height of water flowing fractured zone based on BP neural networks[J]. Journal of Mining & Safety Engineering, 2015, 32(6): 905-910. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201506007.htm
    [23] 李全生, 徐祝贺, 张勇, 等. 基于Hoek-Brown准则的薄基岩厚松散层覆岩变形破坏特征研究[J]. 矿业科学学报, 2019, 4(5): 417-424. http://kykxxb.cumtb.edu.cn/article/id/241

    Li Quansheng, Xu Zhuhe, Zhang Yong, et al. Study on deformation and failure characteristics of overlying strata with thick loose layers and thin bedrock based on Hoek-Brown criterion[J]. Journal of Mining Science and Technology, 2019, 4(5): 417-424. http://kykxxb.cumtb.edu.cn/article/id/241
    [24] 李敬敬. 综放开采覆岩运移特征及"两带"高度的多因素指标分析[D]. 淮南: 安徽理工大学, 2014.
    [25] 胡成林. 浅埋近距煤层重复采动覆岩裂隙演化规律[D]. 徐州: 中国矿业大学, 2014.
    [26] 刘学生, 张明, 宁建国, 等. 近浅埋煤层导水裂隙带发育高度影响因素的数值模拟[J]. 山东科技大学学报: 自然科学版, 2012, 31(5): 31-36. doi: 10.3969/j.issn.1672-3767.2012.05.006

    Liu Xuesheng, Zhang Ming, Ning Jianguo, et al. Numerical simulation of the influencing factors of the development height of the water conducting fracture zone in the near shallow seam[J]. Journal of Shandong University of Science and Technology: Natural Science Edition, 2012, 31(5): 31-36. doi: 10.3969/j.issn.1672-3767.2012.05.006
    [27] 武忠山, 王生全, 彭涛, 等. 曹家滩煤矿导水裂隙带发育规律影响因素数值模拟[J]. 科学技术与工程, 2019, 19(25): 125-129. doi: 10.3969/j.issn.1671-1815.2019.25.018

    Wu Zhongshan, Wang Shengquan, Peng Tao, et al. Numerical simulation on influencing factors of water flowing fractured zone development in Caojiatan coal mine[J]. Science Technology and Engineering, 2019, 19(25): 125-129. doi: 10.3969/j.issn.1671-1815.2019.25.018
    [28] 赵明东, 董东林, 田康. 煤炭地下气化覆岩温度场和裂隙场变化机制模拟研究[J]. 矿业科学学报, 2017, 2(1): 1-6. http://kykxxb.cumtb.edu.cn/article/id/41

    Zhao Mingdong, Dong Donglin, Tian Kang. Change mechanism simulation study of the overlying strata temperature field and fracture field in UCG[J]. Journal of Mining Science and Technology, 2017, 2(1): 1-6. http://kykxxb.cumtb.edu.cn/article/id/41
    [29] 江权, 冯夏庭, 李邵军, 等. 高应力下大型硬岩地下洞室群稳定性设计优化的裂化-抑制法及其应用[J]. 岩石力学与工程学报, 2019, 38(6): 1081-1101. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201906002.htm

    Jiang Quan, Feng Xiating, Li Shaojun, et al. Cracking-restraint design method for large underground Caverns with hard rock under high geostress condition and its practical application[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(6): 1081-1101. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201906002.htm
    [30] Hao X J, Du W S, Zhao Y X, et al. Dynamic tensile behaviour and crack propagation of coal under coupled static-dynamic loading[J]. International Journal of Mining Science and Technology, 2020, 30(5): 659-668. doi: 10.1016/j.ijmst.2020.06.007
    [31] 赵立钦. 补连塔煤矿特厚煤层综采一次采全高覆岩破坏特征研究[D]. 北京: 煤炭科学研究总院, 2018.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  433
  • HTML全文浏览量:  278
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-11
  • 修回日期:  2020-12-07
  • 刊出日期:  2021-08-01

目录

    /

    返回文章
    返回