留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大型复杂露天矿边坡三维建模方法及加固对策研究

陶志刚 任树林 庞仕辉 徐浩田 何满潮

陶志刚, 任树林, 庞仕辉, 徐浩田, 何满潮. 大型复杂露天矿边坡三维建模方法及加固对策研究[J]. 矿业科学学报, 2021, 6(4): 397-408. doi: 10.19606/j.cnki.jmst.2021.04.004
引用本文: 陶志刚, 任树林, 庞仕辉, 徐浩田, 何满潮. 大型复杂露天矿边坡三维建模方法及加固对策研究[J]. 矿业科学学报, 2021, 6(4): 397-408. doi: 10.19606/j.cnki.jmst.2021.04.004
Tao Zhigang, Ren Shulin, Pang Shihui, Xu Haotian, He Manchao. Study on 3D modeling method and reinforcement scheme of large and complex open-pit mine[J]. Journal of Mining Science and Technology, 2021, 6(4): 397-408. doi: 10.19606/j.cnki.jmst.2021.04.004
Citation: Tao Zhigang, Ren Shulin, Pang Shihui, Xu Haotian, He Manchao. Study on 3D modeling method and reinforcement scheme of large and complex open-pit mine[J]. Journal of Mining Science and Technology, 2021, 6(4): 397-408. doi: 10.19606/j.cnki.jmst.2021.04.004

大型复杂露天矿边坡三维建模方法及加固对策研究

doi: 10.19606/j.cnki.jmst.2021.04.004
基金项目: 

国家自然科学基金 41941018

中央高校基本科研业务费专项资金 2015QB02

中央高校基本科研业务费专项资金 2020YJSSB01

详细信息
    作者简介:

    陶志刚(1981—),男,河北邯郸人,博士,副教授,主要从事岩体力学与工程灾害控制等方面的教学与研究工作。Tel:010-62339953,E-mail:taozhigang1981@163.com

    通讯作者:

    任树林(1995—),男,河南信阳人,博士研究生,主要从事岩体力学与工程灾害控制等方面的研究工作。Tel:18537668191,E-mail:rsl1995@126.com

  • 中图分类号: TD353

Study on 3D modeling method and reinforcement scheme of large and complex open-pit mine

  • 摘要: 针对内蒙古长山壕露天金矿西南采场发生大规模倾倒失稳变形现状,本研究对西南采场工程地质条件、岩体结构类型以及变形破坏特征进行系统调查,详细介绍3DMine - FLAC3D大型复杂地质体高精度耦合建模方法及建模过程。在此基础上提出以恒阻大变形锚索为核心的边坡加固方案,并采用数值模拟方法与原支护方案进行对比研究。研究结果表明,西南采场地质结构复杂,断层节理发育,倾倒区岩体以抗弯强度较低的板岩、片岩为主,且支护结构采用小变形锚索,无法抵抗边坡大变形而导致倾倒失稳的发生;3DMine - FLAC3D耦合建模方法实现了复杂地质体的精确建模;采用恒阻大变形锚索加固方案能有效控制边坡失稳变形,取得较好的支护效果。
  • 图  1  长山壕露天金矿全景

    Figure  1.  Panorama of Changshanhao Open-pit Gold Mine

    图  2  长山壕露天采场地质构造

    Figure  2.  Geological structure map of Changshanhao open-pit stope

    图  3  西南采场地质勘探

    Figure  3.  In-situ survey on the southwest stope

    图  4  边坡倾倒现场勘查

    Figure  4.  Scene of slope toppling

    图  5  3DMine-FLAC3D耦合建模流程

    Figure  5.  3DMine-FLAC3D coupling modelling flowchart

    图  6  三维数据库形态

    Figure  6.  3D database morphology

    图  7  露天采场DTM图像

    Figure  7.  Open-Pit DTM Graphics

    图  8  长山壕矿区坐标校正和岩层模型示意图

    Figure  8.  Schematic diagran of coordinate correction and rock formation model of Changshanhao mining area

    图  9  构建地层面模型

    Figure  9.  Ground-level model

    图  10  西南采场断层构造模型

    Figure  10.  Fault structure model of southwest stope

    图  11  西南采场实体模型

    Figure  11.  Southwest stope solid model

    图  12  西南采场现状和最终境界模型

    Figure  12.  Numerical model for current and final mining area

    图  13  西南采场数值计算结果

    Figure  13.  Numerical simulation calculation results

    图  14  边坡支护数值模拟示意图

    Figure  14.  Numerical modeling diagram of slope support

    图  15  支护方案数值计算结果

    Figure  15.  Numerical calculation results of support scheme

    图  16  监测点位移变化

    Figure  16.  Displacement change map of monitoring points

    图  17  锚索轴力

    Figure  17.  Diagrams of axial force of anchor cables

    表  1  西南采场FLAC3D三维数值模拟岩层参数

    Table  1.   Physical and mechanical parameters in the calculation model

    材料 材料代号 密度/(kg·m-3) 体积模量/GPa 剪切模量/GPa c/kPa φ/(°)
    第四系 Q 2 000 1.02 0.87 15 20
    风化层 FH 2 560 1.15 0.95 59 22
    花岗岩体 r 2 600 6.25 4.30 247 44
    红柱石片岩 B4 2 840 3.21 2.63 78.1 31
    黑色石英岩 B3-3 2 282 3.01 2.17 74.5 30
    红柱石片岩 B3-2 2 840 2.71 1.36 67.6 31
    变细砂岩 B3-1 2 750 4.13 3.36 63.2 33
    二云石英片岩 B2-2 2 845 2.77 1.64 63 29
    红柱石片岩 B2-1 2 842 3.44 2.78 74 34
    变细砂岩 B1 2 748 4.50 3.79 63 35
    灰岩 h3 2 830 5.15 5.15 210 41
    风化破碎带 F 2 260 0.915 8.95 15 27
    下载: 导出CSV
  • [1] 黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报, 2007, 26(3): 433-454. doi: 10.3321/j.issn:1000-6915.2007.03.001

    Huang Runqiu. Large-scale landslides and their sliding mechanisms in China since the 20th century[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(3): 433-454. doi: 10.3321/j.issn:1000-6915.2007.03.001
    [2] Froude M J, Petley D N. Global fatal landslide occurrence from 2004 to 2016[J]. Natural Hazards and Earth System Sciences, 2018, 18(8): 2161-2181. doi: 10.5194/nhess-18-2161-2018
    [3] 杜时贵. 大型露天矿山边坡稳定性等精度评价方法[J]. 岩石力学与工程学报, 2018, 37(6): 1301-1331. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201806001.htm

    Du Shigui. Method of equal accuracy assessment for the stability analysis of large open-pit mine slopes[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(6): 1301-1331. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201806001.htm
    [4] 杨天鸿, 张锋春, 于庆磊, 等. 露天矿高陡边坡稳定性研究现状及发展趋势[J]. 岩土力学, 2011, 32(5): 1437-1451, 1472. doi: 10.3969/j.issn.1000-7598.2011.05.025

    Yang Tianhong, Zhang Fengchun, Yu Qinglei, et al. Research situation of open-pit mining high and steep slope stability and its developing trend[J]. Rock and Soil Mechanics, 2011, 32(5): 1437-1451, 1472. doi: 10.3969/j.issn.1000-7598.2011.05.025
    [5] 卢世宗. 我国矿山边坡研究的基本情况和展望[J]. 金属矿山, 1999(9): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS199909001.htm

    Lu Shizong. Basic conditions and prospect of China's mine slope research[J]. Metal Mine, 1999(9): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS199909001.htm
    [6] De Freitas M H, Watters R J. Some field examples of toppling failure[J]. Géotechnique, 1973, 23(4): 495-513. doi: 10.1680/geot.1973.23.4.495
    [7] Goodman R E, Bray J W. Toppling of rock slopes, specialty conference on rock engineering for foundations and slopes[J]. American Society of Civil Engineering, 1976(2): 201-234. http://www.researchgate.net/publication/285237820_Toppling_of_rock_slopes_specialty_conference_on_rock_engineering_for_foundations_and_slopes
    [8] Hoek E, Bray J D. Rock slope engineering[M]. Boca Raton: CRC Press, 1981.
    [9] Aydan Ö, Kawamoto T. The stability of slopes and underground openings against flexural toppling and their stabilisation[J]. Rock Mechanics and Rock Engineering, 1992, 25(3): 143-165. doi: 10.1007/BF01019709
    [10] Adhikary D P, Dyskin A V, Jewell R J, et al. A study of the mechanism of flexural toppling failure of rock slopes[J]. Rock Mechanics and Rock Engineering, 1997, 30(2): 75-93. doi: 10.1007/BF01020126
    [11] Adhikary D P, Dyskin A V. Modelling of progressive and instantaneous failures of foliated rock slopes[J]. Rock Mechanics and Rock Engineering, 2007, 40(4): 349-362. doi: 10.1007/s00603-006-0085-8
    [12] 陈红旗, 黄润秋. 反倾层状边坡弯曲折断的应力及挠度判据[J]. 工程地质学报, 2004, 12(3): 243-246, 273. doi: 10.3969/j.issn.1004-9665.2004.03.004

    Chen Hongqi, Huang Runqiu. Stress and flexibility criteria of bending and breaking in a countertendency layered slope[J]. Journal of Engineering Geology, 2004, 12(3): 243-246, 273. doi: 10.3969/j.issn.1004-9665.2004.03.004
    [13] 卢海峰, 刘泉声, 陈从新. 反倾岩质边坡悬臂梁极限平衡模型的改进[J]. 岩土力学, 2012, 33(2): 577-584. doi: 10.3969/j.issn.1000-7598.2012.02.040

    Lu Haifeng, Liu Quansheng, Chen Congxin. Improvement of cantilever beam limit equilibrium model of counter-tilt rock slopes[J]. Rock and Soil Mechanics, 2012, 33(2): 577-584. doi: 10.3969/j.issn.1000-7598.2012.02.040
    [14] 左保成, 陈从新, 刘小巍, 等. 反倾岩质边坡破坏机理模型试验研究[J]. 岩石力学与工程学报, 2005, 24(19): 3505-3511. doi: 10.3321/j.issn:1000-6915.2005.19.017

    Zuo Baocheng, Chen Congxin, Liu Xiaowei, et al. Modeling experiment study on failure mechanism of counter-tilt rock slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(19): 3505-3511. doi: 10.3321/j.issn:1000-6915.2005.19.017
    [15] 邱俊, 任光明, 王云南. 层状反倾-顺倾边坡倾倒变形形成条件及发育规模特征[J]. 岩土力学, 2016, 37(S2): 513-524, 532. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S2066.htm

    Qiu Jun, Ren Guangming, Wang Yunnan. Characteristics of forming conditions and development scale of toppling in anti-dip and dip stratified slopes[J]. Rock and Soil Mechanics, 2016, 37(S2): 513-524, 532. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S2066.htm
    [16] 黄润秋, 赵建军, 巨能攀, 等. 汤屯高速公路顺层岩质边坡变形机制分析及治理对策研究[J]. 岩石力学与工程学报, 2007, 26(2): 239-246. doi: 10.3321/j.issn:1000-6915.2007.02.003

    Huang Runqiu, Zhao Jianjun, Ju Nengpan, et al. Study on deformation mechanism and control method of bedding rock slope along tangtun expressway[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(2): 239-246. doi: 10.3321/j.issn:1000-6915.2007.02.003
    [17] 殷跃平. 斜倾厚层山体滑坡视向滑动机制研究: 以重庆武隆鸡尾山滑坡为例[J]. 岩石力学与工程学报, 2010, 29(2): 217-226. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201002002.htm

    Yin Yueping. Mechanism of apparent dip slide of inclined bedding rockslide—a case study of jiweishan rockslide in Wulong, Chongqing[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(2): 217-226. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201002002.htm
    [18] 龚文俊, 陶志刚, 何满潮. 岩质边坡弯曲倾倒破坏及支护DDA方法模拟[J]. 矿业科学学报, 2019, 4(6): 489-497. http://kykxxb.cumtb.edu.cn/article/id/250

    Gong Wenjun, Tao Zhigang, He Manchao. Using the discontinuous deformation analysis method to analyze the flexural toppling failure of the rock slope and the reinforcement[J]. Journal of Mining Science and Technology, 2019, 4(6): 489-497. http://kykxxb.cumtb.edu.cn/article/id/250
    [19] 陈庆发, 杨家彩, 高远, 等. 大型复杂地质体三维数值模型构建方法比较研究[J]. 岩土力学, 2016, 37(S2): 753-760. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S2095.htm

    Chen Qingfa, Yang Jiacai, Gao Yuan, et al. Comparative study of construction method for 3D numerical model of large complex geologic body[J]. Rock and Soil Mechanics, 2016, 37(S2): 753-760. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S2095.htm
    [20] 李翔, 王金安, 张少杰. 复杂地质体三维数值建模方法研究[J]. 西安科技大学学报, 2012, 32(6): 676-681. doi: 10.3969/j.issn.1672-9315.2012.06.002

    Li Xiang, Wang Jin'an, Zhang Shaojie. 3D modeling method of complicated geological body[J]. Journal of Xi'an University of Science and Technology, 2012, 32(6): 676-681. doi: 10.3969/j.issn.1672-9315.2012.06.002
    [21] Wang Y S, Zhao B, Li J. Mechanism of the catastrophic June 2017 landslide at xinmo village, songping river, Sichuan Province, China[J]. Landslides, 2018, 15(2): 333-345. doi: 10.1007/s10346-017-0927-3
    [22] Stead D, Wolter A. A critical review of rock slope failure mechanisms: The importance of structural geology[J]. Journal of Structural Geology, 2015, 74: 1-23. doi: 10.1016/j.jsg.2015.02.002
    [23] Camones L A M, Vargas E D A Jr, de Figueiredo R P Jr, et al. Application of the discrete element method for modeling of rock crack propagation and coalescence in the step-path failure mechanism[J]. Engineering Geology, 2013, 153: 80-94. doi: 10.1016/j.enggeo.2012.11.013
    [24] Marschalko M, Yilmaz I, Bednárik M, et al. Influence of underground mining activities on the slope deformation genesis: Doubrava Vrchovec, Doubrava Ujala and Staric case studies from Czech Republic[J]. Engineering Geology, 2012, 147/148: 37-51. doi: 10.1016/j.enggeo.2012.07.014
    [25] 褚娜娜. 基于3DMine软件三维地质模型在陕南汉阴长沟金矿中的应用[D]. 西安: 长安大学, 2012.
    [26] He M C, Gong W L, Wang J, et al. Development of a novel energy-absorbing bolt with extraordinarily large elongation and constant resistance[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 67: 29-42. doi: 10.1016/j.ijrmms.2014.01.007
    [27] 陶志刚, 李梦楠, 庞仕辉, 等. 高恒阻大变形锚索静力学特性数值模拟分析及应用[J]. 矿业科学学报, 2020, 5(1): 34-44. http://kykxxb.cumtb.edu.cn/article/id/263

    Tao Zhigang, Li Mengnan, Pang Shihui, et al. Research on mechanical property and engineering application of cable with high constant resistance and large deformation[J]. Journal of Mining Science and Technology, 2020, 5(1): 34-44. http://kykxxb.cumtb.edu.cn/article/id/263
    [28] 何满潮. 滑坡地质灾害远程监测预报系统及其工程应用[J]. 岩石力学与工程学报, 2009, 28(6): 1081-1090. doi: 10.3321/j.issn:1000-6915.2009.06.001

    He Manchao. Real-time remote monitoring and forecasting system for geological disasters of landslides and its engineering application[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(6): 1081-1090. doi: 10.3321/j.issn:1000-6915.2009.06.001
  • 加载中
图(17) / 表(1)
计量
  • 文章访问数:  706
  • HTML全文浏览量:  238
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-30
  • 修回日期:  2020-10-28
  • 刊出日期:  2021-08-01

目录

    /

    返回文章
    返回