留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

临兴地区盒八段砂岩裂缝发育特征及其对压裂效果的影响

李建红 王延斌

李建红, 王延斌. 临兴地区盒八段砂岩裂缝发育特征及其对压裂效果的影响[J]. 矿业科学学报, 2021, 6(4): 379-388. doi: 10.19606/j.cnki.jmst.2021.04.002
引用本文: 李建红, 王延斌. 临兴地区盒八段砂岩裂缝发育特征及其对压裂效果的影响[J]. 矿业科学学报, 2021, 6(4): 379-388. doi: 10.19606/j.cnki.jmst.2021.04.002
Li Jianhong, Wang Yanbin. Fracture characteristics of the 8th member of Shihezi formation in Linxing Area and its influence on fracturing effect[J]. Journal of Mining Science and Technology, 2021, 6(4): 379-388. doi: 10.19606/j.cnki.jmst.2021.04.002
Citation: Li Jianhong, Wang Yanbin. Fracture characteristics of the 8th member of Shihezi formation in Linxing Area and its influence on fracturing effect[J]. Journal of Mining Science and Technology, 2021, 6(4): 379-388. doi: 10.19606/j.cnki.jmst.2021.04.002

临兴地区盒八段砂岩裂缝发育特征及其对压裂效果的影响

doi: 10.19606/j.cnki.jmst.2021.04.002
基金项目: 

国家科技重大专项 2016ZX05066001-002

详细信息
    作者简介:

    李建红(1995—),男,重庆忠县人,硕士研究生,主要从事非常规天然气方面的研究工作。Tel:18523234848,E-mail:835921267@qq.com

  • 中图分类号: P634.1

Fracture characteristics of the 8th member of Shihezi formation in Linxing Area and its influence on fracturing effect

  • 摘要: 为了深入研究临兴地区盒八段砂岩天然裂缝对压裂效果的影响,基于野外节理观测和成像测井数据对临兴地区天然裂缝发育特征进行精细描述,并利用微地震技术对压裂裂缝进行动态监测。结果表明:①临兴地区盒八段天然裂缝以剪节理为主,节理发育优势方向为NNW、NWW、NNE、NEE,天然裂缝倾角大、数量少且集中发育。②压裂效果穿越型控制类型最差,沟通型较好,俘获型最好;较小的逼近角及水平主应力差利于天然裂缝的开启,当压裂区域水平主应力差较大时,应选择较小的逼近角,以沟通型控制类型压裂为宜;当压裂区域水平主应力差较小时,应适当增大逼近角,以俘获型控制类型压裂效果最佳。研究结果为致密砂岩水力压裂方案设计提供了理论基础。
  • 图  1  临兴区块构造纲要和上古界综合柱状图

    Figure  1.  Location of the study area

    图  2  成像测井解释天然裂缝

    Figure  2.  Imaging logging interpretation of the tectonic fracture

    图  3  临兴地区野外节理观测

    Figure  3.  Field joint observation in Linxing area

    图  4  临兴地区天然裂缝玫瑰花图

    Figure  4.  Strike rose diagram of natural fractures

    图  5  临兴天然裂缝平面分布

    Figure  5.  Distribution of natural fractures of Linxing area

    图  6  天然裂缝控制压裂缝类型(据边利恒[28]修改)

    Figure  6.  Three types of natural fracture controlled fracturing (modified based on Bian Liheng [28])

    图  7  压裂曲线划分类型

    Figure  7.  Classification of fracturing curves types

    图  8  L-103微地震监测

    Figure  8.  L-103 microseismic monitoring

    图  9  L-101微地震监测

    Figure  9.  L-101 microseismic monitoring

    图  10  L-8微地震监测

    Figure  10.  L-8 microseismic monitoring

    表  1  部分野外节理观测数据

    Table  1.   Data of field joint observation

    点位 纬度 经度 节理产状 地层
    73 38°45′21.75″ 111°07′3.08″ 51°∠68° 142°∠83° 下石盒子组
    132 38°45′27.10″ 111°06′47.15″ 322°∠82° 74°∠67° 下石盒子组
    135 38°45′20.86″ 111°07′14.95″ 146°∠75° 242°∠61° 下石盒子组
    139 38°45′20.86″ 111°07′14.95″ 188°∠56° 100°∠76° 下石盒子组
    180 37°35′20.48″ 110°52′28.63″ 191°∠82° 104°∠73° 下石盒子组
    245 37°35′26.86″ 110°52′50.82″ 71°∠82° 164°∠67° 下石盒子组
    246 37°35′25.28″ 110°52′41.15″ 291°∠84° 190°∠66° 下石盒子组
    248 37°35′25.28″ 110°52′41.15″ 192°∠89° 289°∠68° 下石盒子组
    249 37°35′20.02″ 110°52′30.63″ 189°∠89° 95°∠70° 下石盒子组
    下载: 导出CSV

    表  2  压裂缝参数

    Table  2.   Fracturing parameters of Linxing area

    井号 裂缝长/m 东西范围/m 南北范围/m 裂缝方位/(°) 裂缝体积/105m3 波及体积/105m3
    L-103 250 210 250 N38°E 2.53 5.25
    L-101 340 210 330 N34°E 6.17 13.86
    L-8 230(主体) 210 180 N37°W 8.42 26.46
    220(次要) N74°E
    下载: 导出CSV
  • [1] 寇琳琳, 孙现瑶, 胡耀, 等. 致密砂岩气藏研究思路及勘探方法探讨[J]. 云南化工, 2019, 46(10): 148-149. https://www.cnki.com.cn/Article/CJFDTOTAL-YNHG201910063.htm

    Kou Linlin, Sun Xianyao, Hu Yao, et al. Research thinking and exploration method of tight sand gas[J]. Yunnan Chemical Technology, 2019, 46(10): 148-149. https://www.cnki.com.cn/Article/CJFDTOTAL-YNHG201910063.htm
    [2] 李宗田, 李凤霞, 黄志文. 水力压裂在油气田勘探开发中的关键作用[J]. 油气地质与采收率, 2010, 17(5): 76-79, 116. doi: 10.3969/j.issn.1009-9603.2010.05.020

    Li Zongtian, Li Fengxia, Huang Zhiwen. Key role of hydraulic fracturing in oil-gas field exploration and development[J]. Petroleum Geology and Recovery Efficiency, 2010, 17(5): 76-79, 116. doi: 10.3969/j.issn.1009-9603.2010.05.020
    [3] 陈前. 可控中子方位钆示踪裂缝成像评价方法研究[D]. 东营: 中国石油大学(华东), 2018.
    [4] 赵争光, 秦月霜, 杨瑞召. 地面微地震监测致密砂岩储层水力裂缝[J]. 地球物理学进展, 2014, 29(5): 2136-2139. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201405021.htm

    Zhao Zhengguang, Qin Yueshuang, Yang Ruizhao. Hydraulic fracture mapping for a tight sands reservoir by surface based microseismic monitoring[J]. Progress in Geophysics, 2014, 29(5): 2136-2139. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201405021.htm
    [5] Blanton T L. Propagation of hydraulically and dynamically induced fractures in naturally fractured reservoirs[C]// SPE Unconventional Gas Technology Symposium. Louisville, Kentucky. Society of Petroleum Engineers, 1986: 1-15.
    [6] Lamont N, Jessen F W. The effects of existing fractures in rocks on the extension of hydraulic fractures[J]. Journal of Petroleum Technology, 1963, 15(2): 203-209. doi: 10.2118/419-PA
    [7] 陈勉, 庞飞, 金衍. 大尺寸真三轴水力压裂模拟与分析[J]. 岩石力学与工程学报, 2000, 19(S1): 868-872. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2000S1009.htm

    Chen Mian, Pang Fei, Jin Yan. Experiments and analysis on hydraulic fracturing by a large-size triaxial simulator[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(S1): 868-872. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2000S1009.htm
    [8] 马耕, 张帆, 刘晓, 等. 裂缝性储层中水力裂缝扩展规律的试验研究[J]. 采矿与安全工程学报, 2017, 34(5): 993-999. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201705025.htm

    Ma Geng, Zhang Fan, Liu Xiao, et al. Experimental study on hydraulic fracture propagation in fractured reservoir[J]. Journal of Mining & Safety Engineering, 2017, 34(5): 993-999. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201705025.htm
    [9] Warpinski N R, Teufel L W. Influence of geologic discontinuities on hydraulic fracture propagation[J]. Journal of Petroleum Technology, 1987, 39(2): 209-220. doi: 10.2118/13224-PA
    [10] Warpinski N R, Clark J A, Schmidt R A, et al. Laboratory investigation on the-effect of in-situ stresses on hydraulic fracture containment[J]. Society of Petroleum Engineers, 1982, 22(3): 333-340. doi: 10.2118/9834-PA
    [11] Beugelsdijk L J L, Pater C J D, Sato K. Experimental hydraulic fracture propagation in a multi-fractured medium[C]// SPE Asia Pacific Conference on Integrated Modelling for Asset Management. Yokohama Japan: SPE, 2000.
    [12] 林鹤, 李德旗, 周博宇, 等. 天然裂缝对压裂改造效果的影响[J]. 石油地球物理勘探, 2018, 53(S2): 156-161, 167, 13. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ2018S2024.htm

    Lin He, Li Deqi, Zhou Boyu, et al. Influences of natural cracks on fracturing[J]. Oil Geophysical Prospecting, 2018, 53(S2): 156-161, 167, 13. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ2018S2024.htm
    [13] 夏彬伟, 刘浪, 彭子烨, 等. 致密砂岩水平井多裂缝扩展及转向规律研究[J]. 岩土工程学报, 2020, 42(8): 1549-1555. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202008027.htm

    Xia Binwei, Liu Lang, Peng Ziye, et al. Multi-fracture propagation and deflection laws of horizontal wells in tight sandstone[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1549-1555. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202008027.htm
    [14] 樊建明, 屈雪峰, 王冲, 等. 鄂尔多斯盆地致密储集层天然裂缝分布特征及有效裂缝预测新方法[J]. 石油勘探与开发, 2016, 43(5): 740-748. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201605010.htm

    Fan Jianming, Qu Xuefeng, Wang Chong, et al. Natural fracture distribution and a new method predicting effective fractures in tight oil reservoirs of Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2016, 43(5): 740-748. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201605010.htm
    [15] 刘格云, 黄臣军, 周新桂, 等. 鄂尔多斯盆地三叠系延长组裂缝发育程度定量评价[J]. 石油勘探与开发, 2015, 42(4): 444-453. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201504006.htm

    Liu Geyun, Huang Chenjun, Zhou Xingui, et al. Quantitative evaluation of fracture development in Triassic Yanchang Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(4): 444-453. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201504006.htm
    [16] 徐延勇, 丁万贵, 李超, 等. 鄂尔多斯盆地东缘临兴区块山西组天然裂缝发育特征与定量预测[J]. 中国煤炭地质, 2019, 31(7): 1-6. doi: 10.3969/j.issn.1674-1803.2019.07.01

    Xu Yanyong, Ding Wangui, Li Chao, et al. Shanxi formation natural fissure development features and quantitative prediction in Linxing Block, Eastern Ordos Basin[J]. Coal Geology of China, 2019, 31(7): 1-6. doi: 10.3969/j.issn.1674-1803.2019.07.01
    [17] 朱超. 临兴地区煤系气开发地质单元[D]. 徐州: 中国矿业大学, 2019.
    [18] 陶传奇. 鄂尔多斯盆地东缘临兴地区深部煤层气富集成藏规律研究[D]. 北京: 中国矿业大学(北京), 2019.
    [19] 王赞惟. 鄂尔多斯盆地东缘临兴地区盒8段储层微观孔隙结构及渗流特征[J]. 非常规油气, 2020, 7(1): 59-64. doi: 10.3969/j.issn.2095-8471.2020.01.012

    Wang Zanwei. Microscopic pore structure and the seepage characteristics in tight sandstone reservoir of the 8th member of lower Shihezi formation in Linxing area of east Ordos basin[J]. Unconventional Oil & Gas, 2020, 7(1): 59-64. doi: 10.3969/j.issn.2095-8471.2020.01.012
    [20] 赵岳, 王延斌, 钟大康, 等. 致密砂岩储集层成岩演化与致密油充注成藏关系研究——以鄂尔多斯盆地延长组为例[J]. 矿业科学学报, 2018, 3(2): 106-118. http://kykxxb.cumtb.edu.cn/article/id/128

    Zhao Yue, Wang Yanbin, Zhong Dakang, et al. Study on the relationship between tight sandstone reservoir diagenetic evolution and hydrocarbon reservoirs filling: A case from the Yanchang Formation, Ordos Basin[J]. Journal of Mining Science and Technology, 2018, 3(2): 106-118. http://kykxxb.cumtb.edu.cn/article/id/128
    [21] 刘玲, 汤达祯, 许浩. 临兴上古生界致密储层裂缝发育特征及对致密气富集影响[J]. 高校地质学报, 2019, 25(3): 457-465. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201903014.htm

    Liu Ling, Tang Dazhen, Xu Hao. Development of fractures and its effects on gas accumulation in the upper Paleozoic tight sandstone reservoirs of the Linxing block[J]. Geological Journal of China Universities, 2019, 25(3): 457-465. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201903014.htm
    [22] Gao X D, Wang Y B, Ni X M, et al. Recovery of tectonic traces and its influence on coalbed methane reservoirs: a case study in the Linxing area, eastern Ordos Basin, China[J]. Journal of Natural Gas Science and Engineering, 2018, 56: 414-427. doi: 10.1016/j.jngse.2018.06.029
    [23] 李勇, 汤达祯, 孟尚志, 等. 鄂尔多斯盆地东缘煤储层地应力状态及其对煤层气勘探开发的影响[J]. 矿业科学学报, 2017, 2(5): 416-424. http://kykxxb.cumtb.edu.cn/article/id/91

    Li Yong, Tang Dazhen, Meng Shangzhi, et al. The in situ stress of coal reservoirs in east margin of Ordos basin and its influence on coalbed methane[J]. Journal of Mining Science and Technology, 2017, 2(5): 416-424. http://kykxxb.cumtb.edu.cn/article/id/91
    [24] 赵石虎. 鄂尔多斯东缘临兴地区深部煤储层古应力与裂缝预测[D]. 北京: 中国矿业大学(北京), 2018.
    [25] 仇德智. 天然裂缝影响下人工裂缝走向判别准则建立[D]. 大庆: 东北石油大学, 2018.
    [26] 李鑫, 傅雪海. 潞安矿区煤储层裂隙及其与人工裂缝的关系[J]. 煤田地质与勘探, 2015, 43(1): 22-25, 29. doi: 10.3969/j.issn.1001-1986.2015.01.005

    Li Xin, Fu Xuehai. The relationship between natural fractures and artificial fractures in coal reservoir in Lu'an mining area[J]. Coal Geology & Exploration, 2015, 43(1): 22-25, 29. doi: 10.3969/j.issn.1001-1986.2015.01.005
    [27] Chatterjee R, Gupta S D, Mandal P P. Fracture and stress orientation from borehole image logs: a case study from Cambay basin, India[J]. Journal of the Geological Society of India, 2017, 89(5): 573-580. doi: 10.1007/s12594-017-0646-3
    [28] 边利恒, 张亮, 刘清. 天然裂隙对煤层气压裂效果的影响: 以鄂尔多斯盆地韩城区块为例[J]. 天然气工业, 2018, 38(S1): 129-133. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG2018S1025.htm

    Bian Liheng, Zhang Liang, Liu Qing. Influence of natural fractures on coalbed gas fracturing effect: a case study of Hancheng block in Ordos Basin[J]. Natural Gas Industry, 2018, 38(S1): 129-133. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG2018S1025.htm
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  507
  • HTML全文浏览量:  188
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-29
  • 修回日期:  2020-11-10
  • 刊出日期:  2021-08-01

目录

    /

    返回文章
    返回