留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

通风换气对煤矿井下电缆巷火灾影响分析

桂小红 游建平 苏树君 李颖 李伟

桂小红, 游建平, 苏树君, 李颖, 李伟. 通风换气对煤矿井下电缆巷火灾影响分析[J]. 矿业科学学报, 2021, 6(3): 348-355. doi: 10.19606/j.cnki.jmst.2021.03.012
引用本文: 桂小红, 游建平, 苏树君, 李颖, 李伟. 通风换气对煤矿井下电缆巷火灾影响分析[J]. 矿业科学学报, 2021, 6(3): 348-355. doi: 10.19606/j.cnki.jmst.2021.03.012
Gui Xiaohong, You Jianping, Su Shujun, Li Ying, Li Wei. Analysis of the influence of ventilation on fire in underground cable roadway of coal mine[J]. Journal of Mining Science and Technology, 2021, 6(3): 348-355. doi: 10.19606/j.cnki.jmst.2021.03.012
Citation: Gui Xiaohong, You Jianping, Su Shujun, Li Ying, Li Wei. Analysis of the influence of ventilation on fire in underground cable roadway of coal mine[J]. Journal of Mining Science and Technology, 2021, 6(3): 348-355. doi: 10.19606/j.cnki.jmst.2021.03.012

通风换气对煤矿井下电缆巷火灾影响分析

doi: 10.19606/j.cnki.jmst.2021.03.012
基金项目: 

国家自然科学基金 51476172

详细信息
    作者简介:

    桂小红(1976—),男,安徽枞阳人,副教授,博士,主要从事煤矿安全方面的教学与科研工作。Tel: 010-82375620,E-mail: gxhbox@sina.com

  • 中图分类号: TD75

Analysis of the influence of ventilation on fire in underground cable roadway of coal mine

  • 摘要: 为研究不同通风换气次数对煤矿井下电缆巷火灾的影响,基于FDS火灾模拟软件建立了某电缆巷全尺寸模型进行火灾模拟。模拟共设置四种通风换气次数工况,通过数值方法求解热驱动的低流速N-S方程得到了各工况下的电缆巷火灾烟气分布云图、空气浓度分布云图及火源点顶棚温度变化,确定了逆风侧最远通风距离与通风换气次数的关系式,并计算得到火源逆风侧最小烟气扩散距离为50.8 m。模拟结果表明,在通风逆风侧,风速小于1.70 m/s时,烟气达到最远扩散距离的时间随风速增大而增大,风速大于1.70 m/s时,烟气达到最远扩散距离的时间随风速增大而减小;逆风侧由于上部区域烟气含量更高,并受气流阻挡作用仍在不断堆积,而下部烟气含量较小,随风流向顺风侧蔓延,扩散作用明显,从而形成逆风侧同截面上下部空气含量差距较大、顺风侧空气含量分布较为均匀的情况;通风换气次数对于火源顶棚达到稳定温度所需时间无明显影响,但对其温度大小有一定影响,火源顶棚稳定温度与通风换气次数大小呈现反比趋势。研究结果可为工矿区电缆巷的火灾防治提供参考。
  • 图  1  电缆巷物理模型

    Figure  1.  Cable roadway physical model

    图  2  各时刻烟气扩散

    Figure  2.  Smoke diffusion at each moment

    图  3  逆风最大扩散距离与风速关系

    Figure  3.  The relationship between the maximum spread distance of headwind and wind speed

    图  4  工况1—4下空气浓度分布

    Figure  4.  Air concentration distribution of working condition 1-4

    图  5  工况1—4下火源上方距离顶棚0.2 m处温度随时间变化

    Figure  5.  Temperature of working condition 1-4 changes with time at a distance of 0.2 m from the ceiling above the fire source

    图  6  火源顶棚温度与通风换气次数关系曲线

    Figure  6.  Curve of relationship between fire ceiling temperature and ventilation frequency

    表  1  各工况设置

    Table  1.   Setting table for each working condition

    工况通风换气次数/(次·h-1)风速/(m·s-1)
    工况100
    工况221.33
    工况342.67
    工况464
    下载: 导出CSV

    表  2  工况1—4顺风侧和逆风侧各时刻扩散距离

    Table  2.   Diffusion distance at different time on downwind and upwind sides under condition 1-4

    扩散
    时间/s
    顺风侧烟气扩散距离/m逆风侧烟气扩散距离/m
    工况1工况2工况3工况4工况1工况2工况3工况4
    1003033.333.336.73028.926.724.4
    2006066.768.977.86055.647.841.1
    3007888.994.41007871.16052.2
    400891001001008978.96554.4
    500961001001009683.366.956.7
    60010010010010010085.667.357.8
    70010010010010010087.267.357.8
    下载: 导出CSV

    表  3  工况1—4最大扩散距离及扩散时间

    Table  3.   Maximum diffusion distance and diffusion timetable under working condition 1-4

    工况通风速度/
    (m·s-1)
    最大扩散距离/m达到最大扩散
    距离所需时间/s
    平均扩散
    速度/(m·s-1)
    顺风侧工况10 1005500.18
    工况21.33 1003750.27
    工况32.67 1003300.30
    工况44 1003050.33
    逆风侧工况10 100550 0.18
    工况21.33 91.11 000 0.09
    工况32.67 67.3627 0.11
    工况44 57.8430 0.13
    下载: 导出CSV

    表  4  工况1—4火源顶棚稳定温度及所需时间

    Table  4.   Fire ceiling stable temperature and time of working condition 1-4

    工况火源顶棚达到稳定
    温度所需时间/s
    稳定温度/℃
    1200550
    2200520
    3200490
    4200400
    下载: 导出CSV
  • [1] 王方舜. 城市综合管廊电缆火灾CFD数值模拟研究[J]. 武警学院学报, 2017, 33(8): 14-18. doi: 10.3969/j.issn.1008-2077.2017.08.003

    Wang Fangshun. Effect of utility tunnel fire compartment on the timing of smoke exhaust & servicemen evacuation in cable fires[J]. Journal of the Armed Police Academy, 2017, 33(8): 14-18. doi: 10.3969/j.issn.1008-2077.2017.08.003
    [2] 尹新生, 崔凤宇, 佟晓倩, 等. 浅谈地下电缆巷的发展与探索[J]. 河南建材, 2019(4): 324-325, 328. doi: 10.3969/j.issn.1008-9772.2019.04.187

    Yin Xinsheng, Cui Fengyu, Tong Xiaoqian, et al. Development and exploration of transverse underground cable lane[J]. Henan Building Materials, 2019(4): 324-325, 328. doi: 10.3969/j.issn.1008-9772.2019.04.187
    [3] Xie Q Y, Zhang H P, Tong L. Experimental study on the fire protection properties of PVC sheath for old and new cables[J]. Journal of Hazardous Materials, 2010, 179(1/2/3): 373-381. http://europepmc.org/abstract/med/20359822
    [4] Niu Y J, Li W T. Simulation study on value of cable fire in the cable tunnel[J]. Procedia Engineering, 2012, 43: 569-573. doi: 10.1016/j.proeng.2012.08.100
    [5] Huang X J, Bi K, Liu X S, et al. A model for predicting temperature produced by upward spreading cable fire under natural ventilation[J]. Energy Procedia, 2015, 66: 177-180. doi: 10.1016/j.egypro.2015.02.010
    [6] Zhang J Q, Ji K, Yan B, et al. Numerical simulation on smoke propagation and fire separation in electric power cable tunnel[J]. Journal of Physics: Conference Series, 2018, 1064: 012015. doi: 10.1088/1742-6596/1064/1/012015
    [7] Tao H W, Zhang X C, Guo Z M, et al. Combustion characteristics and heat release rate of vertical cable fire for sustainable energy system in an analogue underground compartment[J]. Sustainable Cities and Society, 2019, 45: 406-412. doi: 10.1016/j.scs.2018.12.001
    [8] Liang K, Hao X F, An W G, et al. Study on cable fire spread and smoke temperature distribution in T-shaped utility tunnel[J]. Case Studies in Thermal Engineering, 2019, 14: 100433. doi: 10.1016/j.csite.2019.100433
    [9] 柴一波. 高压细水雾及超细干粉在综合管廊电缆火灾中的应用[J]. 消防科学与技术, 2017, 36(12): 1690-1692. doi: 10.3969/j.issn.1009-0029.2017.12.017

    Chai Yibo. Application of high pressure water mist and superfine powder on cable fire in utility tunnel[J]. Fire Science and Technology, 2017, 36(12): 1690-1692. doi: 10.3969/j.issn.1009-0029.2017.12.017
    [10] 杨永斌. 火源位置对地下电缆巷电力舱火灾蔓延的影响研究[J]. 武警学院学报, 2018, 34(2): 14-19. doi: 10.3969/j.issn.1008-2077.2018.02.004

    Yang Yongbin. Research on the influence of fire source location on fire spread of power cabin in underground cable lane[J]. Journal of the Armed Police Academy, 2018, 34(2): 14-19. doi: 10.3969/j.issn.1008-2077.2018.02.004
    [11] 刘德军, 左建平, 刘海雁, 等. 我国煤矿巷道支护理论及技术的现状与发展趋势[J]. 矿业科学学报, 2020, 5(1): 22-33. http://kykxxb.cumtb.edu.cn/article/id/262

    Liu Dejun, Zuo Jianping, Liu Haiyan, et al. Development and present situation of support theory and technology in coal mine roadway in China[J]. Journal of Mining Science and Technology, 2020, 5(1): 22-33. http://kykxxb.cumtb.edu.cn/article/id/262
    [12] 王彦文, 赵永梅, 孙梦雅, 等. 一种矿井高压电缆绝缘监测新方法[J]. 矿业科学学报, 2017, 2(6): 582-587. http://kykxxb.cumtb.edu.cn/article/id/111

    Wang Yanwen, Zhao Yongmei, Sun Mengya, et al. A new method of high-voltage cable insulation monitoring in coal mine[J]. Journal of Mining Science and Technology, 2017, 2(6): 582-587. http://kykxxb.cumtb.edu.cn/article/id/111
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  21
  • HTML全文浏览量:  21
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-21
  • 修回日期:  2020-12-23
  • 刊出日期:  2021-06-01

目录

    /

    返回文章
    返回