留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

燃煤发电生命周期职业健康损害评价研究

王伟 姚健庭 尘兴邦 佟瑞鹏

王伟, 姚健庭, 尘兴邦, 佟瑞鹏. 燃煤发电生命周期职业健康损害评价研究[J]. 矿业科学学报, 2021, 6(3): 333-341. doi: 10.19606/j.cnki.jmst.2021.03.010
引用本文: 王伟, 姚健庭, 尘兴邦, 佟瑞鹏. 燃煤发电生命周期职业健康损害评价研究[J]. 矿业科学学报, 2021, 6(3): 333-341. doi: 10.19606/j.cnki.jmst.2021.03.010
Wang Wei, Yao Jianting, Chen Xingbang, Tong Ruipeng. Research on occupational health damage assessment model of coal-fired power generation during the life cycle[J]. Journal of Mining Science and Technology, 2021, 6(3): 333-341. doi: 10.19606/j.cnki.jmst.2021.03.010
Citation: Wang Wei, Yao Jianting, Chen Xingbang, Tong Ruipeng. Research on occupational health damage assessment model of coal-fired power generation during the life cycle[J]. Journal of Mining Science and Technology, 2021, 6(3): 333-341. doi: 10.19606/j.cnki.jmst.2021.03.010

燃煤发电生命周期职业健康损害评价研究

doi: 10.19606/j.cnki.jmst.2021.03.010
基金项目: 

国家自然科学基金 52074302

北京市自然科学基金 8212015

详细信息
    作者简介:

    王伟(1995—),男,四川巴中人,硕士研究生,主要从事职业健康风险评估的研究工作。Tel: 18811191895,E-mail: bwe575@163.com

    通讯作者:

    佟瑞鹏(1977—),男,黑龙江穆棱人,教授,博士生导师,主要从事行为安全管理、职业心理健康、环境风险评估等方面的研究工作。Tel: 13718431777,E-mail: tongrp@cumtb.edu.cn

  • 中图分类号: X913

Research on occupational health damage assessment model of coal-fired power generation during the life cycle

  • 摘要: 煤电行业在推动我国国民经济和社会发展的同时也会造成环境污染,从而威胁着从业人员和附近居民的身体健康。为定量评估燃煤发电生命周期各职业健康损害因素的影响程度,本文依据LCA理论构建了燃煤发电生命周期职业损害评价体系。首先结合煤电行业的实际情况对燃煤发电生命周期各环节进行划分;然后识别各环节存在的职业健康损害因素、分析其过程清单;最后通过特征化与货币化分析,实现燃煤发电生命周期的职业健康损害的量化评价。该评价体系应用结果表明,燃煤发电生命周期中煤炭燃烧环节以及各职业健康损害因素中SO2对人体造成的健康损害最为严重。评价结果可为煤电行业的健康管理与决策提供依据。
  • 图  1  生命周期评价的流程框架

    Figure  1.  Framework of life cycle assessment

    图  2  燃煤发电生命周期各环节职业健康损害所占比例

    Figure  2.  Proportion of health damage in each part of the life cycle of coal-fired power generation

    图  3  燃煤发电生命周期各污染物的职业健康损害所占比例

    Figure  3.  Proportion of health damage caused by each pollutant in the life cycle of coal-fired power generation

    图  4  煤炭开采环节职业健康损害的社会支付意愿

    Figure  4.  Amount the society willing to pay for occupational health damage in coal mining

    图  5  煤炭运输环节职业健康损害的社会支付意愿

    Figure  5.  Amount the society willing to pay for occup ational health damage in coal transportation

    图  6  煤炭燃烧环节职业健康损害的社会支付意愿

    Figure  6.  Amount the society willing to pay for occup ational health damage in coal combustion

    图  7  灰渣处理环节职业健康损害的社会支付意愿

    Figure  7.  Amount the society willings to pay for occu pational health damage in slag disposal

    表  1  不同类型职业健康损害的持续时间和伤残权重

    Table  1.   Average duration and disability weight of occupational health damage

    职业健康损害类型持续时间/a伤残权重
    尘肺病150.26
    慢性阻塞性肺疾病200.15
    脑血管疾病250.04
    登革热0.06
    心血管疾病250.04
    血吸虫病0.08
    急性呼吸道感染0.0040.03
    疟疾0.01
    肺心病250.24
    下载: 导出CSV

    表  2  燃煤发电生命周期各环节健康损害评估结果汇总

    Table  2.   Summary of health damage assessment results for each segment of the coal-fired power generation life cycle

    阶段划分健康损害类型总计/元
    全球变暖呼吸系统循环系统
    煤炭开采2.186×1046.047×1061.075×1067.144×106
    煤炭运输3.178×1034.117×1056.246×1051.039×106
    煤炭燃烧6.926×1051.963×1077.275×1062.760×107
    灰渣处理3.664×1029.722×1041.136×1052.112×105
    总计/元7.180×1052.619×1079.088×1063.599×107
    下载: 导出CSV

    表  3  燃煤发电生命周期健康损害因素汇总

    Table  3.   Summary of occupational health damage factors

    损害因素健康损害类型总计/元
    全球变暖呼吸系统循环系统
    温室气体7.180×1057.180×105
    PM102.345×1061.962×1064.307×106
    NO21.015×1066.420×1067.434×106
    SO22.282×1077.068×1052.352×107
    总计/元7.180×1052.619×1079.088×1063.599×107
    下载: 导出CSV
  • [1] You C F, Xu X C. Coal combustion and its pollution control in China[J]. Energy, 2010, 35(11): 4467-4472. doi: 10.1016/j.energy.2009.04.019
    [2] Gao C X, Su B, Sun M, et al. Interprovincial transfer of embodied primary energy in China: A complex network approach[J]. Applied Energy, 2018, 215: 792-807. doi: 10.1016/j.apenergy.2018.02.075
    [3] 中华人民共和国国家统计局. 年度能源生产总量和构成: 一次能源生产总量[EB/OL]. [2021-03-19]. https://data.stats.gov.cn/easyquery.htm?cn=C01.html
    [4] Wang J M, Wang R G, Zhu Y C, et al. Life cycle assessment and environmental cost accounting of coal-fired power generation in China[J]. Energy Policy, 2018, 115: 374-384. doi: 10.1016/j.enpol.2018.01.040
    [5] Khaniabadi Y O, Polosa R, Chuturkova R Z, et al. Human health risk assessment due to ambient PM10 and SO2 by an air quality modeling technique[J]. Process Safety and Environmental Protection, 2017, 111: 346-354. doi: 10.1016/j.psep.2017.07.018
    [6] Hsieh N H, Liao C M. Assessing exposure risk for dust storm events-associated lung function decrement in asthmatics and implications for control[J]. Atmospheric Environment, 2013, 68: 256-264. doi: 10.1016/j.atmosenv.2012.11.064
    [7] Petsonk E L, Rose C, Cohen R. Coal mine dust lung disease. New lessons from old exposure[J]. American Journal of Respiratory and Critical Care Medicine, 2013, 187(11): 1178-1185. doi: 10.1164/rccm.201301-0042CI
    [8] Kermani M, Dowlati M, Jonidi J A, et al. Number of total mortality, cardiovascular mortality and chronic obstructive pulmonary disease due to exposure with Nitrogen dioxide in Tehran during 2005-2014[J]. Urmia Medical Journal, 2017, 28(4): 22-32. doi: 10.18869/acadpub.umj.28.4.22
    [9] Ghanbari Ghozikali M, Heibati B, Naddafi K, et al. Evaluation of chronic obstructive pulmonary disease (COPD) attributed to atmospheric O3, NO2, and SO2 using air Q model (2011-2012)[J]. Environmental Research, 2016, 144: 99-105. doi: 10.1016/j.envres.2015.10.030
    [10] 崔亮亮, 张萌, 于坤坤, 等. 济南市大气重点污染物对居民应急呼叫事件的急性影响[J]. 山东大学学报: 医学版, 2018, 56(11): 34-41. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYB201811018.htm

    Cui Liangliang, Zhang Meng, Yu Kunkun, et al. Acute effects of major air pollutants on emergency calls in Jinan City[J]. Journal of Shandong University: Health Sciences, 2018, 56(11): 34-41. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYB201811018.htm
    [11] 盛戎蓉, 高传思, 李畅畅, 等. 全球气候变化对职业人群健康影响[J]. 中国公共卫生, 2017, 33(8): 1259-1263. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGW201708032.htm

    Sheng Rongrong, Gao Chuansi, Li Changchang, et al. Effects of global climate change on health of occupational populations: a review[J]. Chinese Journal of Public Health, 2017, 33(8): 1259-1263. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGW201708032.htm
    [12] Lave L B, Freeburg L C. Health effects of electricity generation from coal, oil, and nuclear fuel[EB/OL]. 1973.
    [13] Kannan R, Leong K C, Osman R, et al. Life cycle energy, emissions and cost inventory of power generation technologies in Singapore[J]. Renewable & Sustainable Energy Reviews, 2007, 11(4): 702-715.
    [14] Babbitt C W, Lindner A S. A life cycle inventory of coal used for electricity production in Florida[J]. Journal of Cleaner Production, 2005, 13(9): 903-912. doi: 10.1016/j.jclepro.2004.04.007
    [15] Hertwich E G, Gibon T, Bouman E A, et al. Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(20): 6277-6282. doi: 10.1073/pnas.1312753111
    [16] Wijaya M E, Limmeechokchai B. The hidden costs of fossil power generation in Indonesia: a reduction approach through low carbon society[J]. Songklanakarin Journal of Science and Technology, 2010, 32(1): 81-89. http://www.cabdirect.org/abstracts/20113177820.html
    [17] China Statistical Yearbook[M]. Beijing: China Statistics Press, 2017.
    [18] China Communications Yearbook[M]. Beijing: China Statistics Press, 2017.
    [19] 山东省统计局, 国家统计局山东调查总队. 山东统计年鉴(2017)[M]. 北京: 中国统计出版社, 2017.
    [20] 枣庄市统计局. 枣庄统计年鉴(2017)[M]. 北京: 中国统计出版社, 2017.
    [21] Arvidsson R, Hildenbrand J, Baumann H, et al. A method for human health impact assessment in social LCA: lessons from three case studies[J]. The International Journal of Life Cycle Assessment, 2018, 23(3): 690-699. doi: 10.1007/s11367-016-1116-7
    [22] ISO14040: Environment management-life cycle assessment-principles and framework, 1997(E)[S].
    [23] Sun Y, Zhang X B, Ren G Y, et al. Contribution of urbanization to warming in China[J]. Nature Climate Change, 2016, 6(7): 706-709. doi: 10.1038/nclimate2956
    [24] Guo X J, Huang J B, Luo Y, et al. Projection of heat waves over China for eight different global warming targets using 12 CMIP5 models[J]. Theoretical and Applied Climatology, 2017, 128(3/4): 507-522. http://www.tandfonline.com/servlet/linkout?suffix=CIT0007&dbid=16&doi=10.1080%2F16742834.2018.1440134&key=10.1007%2Fs00704-015-1718-1
    [25] Meraz M, Rodriguez E, Femat R, et al. Statistical persistence of air pollutants (O3, SO2, NO2 and PM10) in Mexico City[J]. Physica A: Statistical Mechanics and Its Applications, 2015, 427: 202-217. doi: 10.1016/j.physa.2015.02.009
    [26] Bennett D. ISO and the WTO: a report to the international confederation of free trade unions' working party on health, safety, and environment[J]. New Solutions: A Journal of Environmental and Occupational Health Policy, 2001, 11(2): 197-201. doi: 10.2190/6DQQ-5DHG-4RUK-R76B
    [27] Li X D, Zhu Y M, Zhang Z H. An LCA-based environmental impact assessment model for construction processes[J]. Building and Environment. 2010, 45(3): 766-775. doi: 10.1016/j.buildenv.2009.08.010
    [28] Murray C J. Quantifying the burden of disease: the technical basis for disability-adjusted life years[J]. Bull World Health Organ, 1994, 72(3): 429-445.
    [29] WHO. Report of the 4th network meeting of the WHO collaborating centers in occupational health[EB/OL]. [2019-2-23]. http://www.who.int/occupational-health/network/en/oeh4meetreport.pdf.
    [30] Sun Y, Zhang X B, Ren G Y, et al. Contribution of urbanization to warming in China[J]. Nature Climate Change, 2016, 6(7): 706-709. doi: 10.1038/nclimate2956
    [31] World Bank. World development report 1993[M]. New York: Oxford University Press, 1993.
    [32] Tong R P, Cheng M Z, Zhang L, et al. The construction dust-induced occupational health risk using Monte-Carlo simulation[J]. Journal of Cleaner Production, 2018, 184: 598-608. doi: 10.1016/j.jclepro.2018.02.286
    [33] 佟瑞鹏, 翟亚兵, 闫凯, 等. 煤矿不同工种的粉尘健康风险定量评价[J]. 中国安全科学学报, 2013, 23(11): 102-107. doi: 10.3969/j.issn.1003-3033.2013.11.018

    Tong Ruipeng, Zhai Yabing, Yan Kai, et al. Quantitative evaluation of coalmine dust health risk to miners in different working areas[J]. China Safety Science Journal, 2013, 23(11): 102-107. doi: 10.3969/j.issn.1003-3033.2013.11.018
    [34] Viscusi W K, Aldy J E. The value of a statistical life: a critical review of market estimates throughout the world[J]. Journal of Risk and Uncertainty, 2003, 27(1): 5-76. doi: 10.1023/A:1025598106257
    [35] World Bank. World data bank[EB/OL]. [2019-03-11]. https: //en.wikipedia.org/wiki/List _ of _ countries_by_GDP _(PPP)_per_capita.
    [36] 郜晔昕. 我国煤炭发电的外部成本研究[D]. 广州: 华南理工大学, 2012.
    [37] Tong D, Zhang Q, Liu F, et al. Current emissions and future mitigation pathways of coal-fired power plants in China from 2010 to 2030[J]. Environmental Science & Technology, 2018, 52(21): 12905-12914. http://www.ncbi.nlm.nih.gov/pubmed/30249091
    [38] Whitaker M, Heath G A, O'Donoughue P, et al. Life cycle greenhouse gas emissions of coal-fired electricity generation[J]. Journal of Industrial Ecology, 2012, 16: 53-72. doi: 10.1111/j.1530-9290.2012.00465.x
    [39] 费雄, 刘萍, 朱恒忠, 等. 基于模糊综合评判的贵州省煤矿职业危害综合评价[J]. 煤矿安全, 2017, 48(2): 237-240. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201702064.htm

    Fei Xiong, Liu Ping, Zhu Hengzhong, et al. Comprehesive evaluation of occupational hazards in coal mines of Guizhou Province based on fuzzy comprehensive evaluation[J]. Safety in Coal Mines, 2017, 48(2): 237-240. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201702064.htm
    [40] Postma D S, Bush A, van den Berge M. Risk factors and early origins of chronic obstructive pulmonary disease[J]. Lancet, 2015, 385(9971): 899-909. doi: 10.1016/S0140-6736(14)60446-3
    [41] Bao Q, Nie W, Liu C, et al. Preparation and characterization of a binary-graft-based, water-absorbing dust suppressant for coal transportation[J]. Journal of Applied Polymer Science, 2019, 136(7): 47065-47081. doi: 10.1002/app.47065
    [42] Zhang B, Chen B. Dynamic hybrid life cycle assessment of CO2 emissions of a typical biogas project[J]. Energy Procedia, 2016, 104: 396-401. doi: 10.1016/j.egypro.2016.12.067
    [43] Zhao B T, Su Y X, Tao W W, et al. Post-combustion CO2 capture by aqueous ammonia: a state-of-the-art review[J]. International Journal of Greenhouse Gas Control, 2012, 9: 355-371. doi: 10.1016/j.ijggc.2012.05.006
    [44] Ferrara G, Lanzini A, Leone P, et al. Exergetic and exergoeconomic analysis of post-combustion CO2 capture using MEA-solvent chemical absorption[J]. Energy, 2017, 130: 113-128. doi: 10.1016/j.energy.2017.04.096
    [45] Zhang H, Zhang B, Bi J. More efforts, more benefits: air pollutant control of coal-fired power plants in China[J]. Energy, 2015, 80: 1-9. doi: 10.1016/j.energy.2014.11.029
    [46] Treyer K, Bauer C. Life cycle inventories of electricity generation and power supply in version 3 of the ecoinvent database-part Ⅱ: electricity markets[J]. The International Journal of Life Cycle Assessment, 2016, 21(9): 1255-1268. doi: 10.1007/s11367-013-0694-x
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  49
  • HTML全文浏览量:  27
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-20
  • 修回日期:  2021-03-12
  • 刊出日期:  2021-06-01

目录

    /

    返回文章
    返回