留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高矿化度矿井水中螺纹钢锚杆点蚀机制研究

褚晓威 鞠文君 付玉凯

褚晓威, 鞠文君, 付玉凯. 高矿化度矿井水中螺纹钢锚杆点蚀机制研究[J]. 矿业科学学报, 2021, 6(3): 305-313. doi: 10.19606/j.cnki.jmst.2021.03.007
引用本文: 褚晓威, 鞠文君, 付玉凯. 高矿化度矿井水中螺纹钢锚杆点蚀机制研究[J]. 矿业科学学报, 2021, 6(3): 305-313. doi: 10.19606/j.cnki.jmst.2021.03.007
Chu Xiaowei, Ju Wenjun, Fu Yukai. Study on pitting mechanism of rebar rockbolt in highly-mineralized mine water[J]. Journal of Mining Science and Technology, 2021, 6(3): 305-313. doi: 10.19606/j.cnki.jmst.2021.03.007
Citation: Chu Xiaowei, Ju Wenjun, Fu Yukai. Study on pitting mechanism of rebar rockbolt in highly-mineralized mine water[J]. Journal of Mining Science and Technology, 2021, 6(3): 305-313. doi: 10.19606/j.cnki.jmst.2021.03.007

高矿化度矿井水中螺纹钢锚杆点蚀机制研究

doi: 10.19606/j.cnki.jmst.2021.03.007
基金项目: 

国家自然科学基金 52004126

国家自然科学基金 51804159

天地科技开采设计事业部科技创新基金 KJ-2018-TDKCZL-13

详细信息
    作者简介:

    褚晓威(1986—),男,山东枣庄人,副研究员,博士研究生,主要从事煤矿巷道矿压理论与支护技术等方面的研究工作。Tel: 010-84263126-8004,E-mail: chuxiaowei2003@163.com

  • 中图分类号: TD353;TG172

Study on pitting mechanism of rebar rockbolt in highly-mineralized mine water

  • 摘要: 受地下水侵蚀及开采环境影响,锚杆易发生腐蚀甚至断裂,点蚀等局部腐蚀形式通常是锚杆失效的主要源头。为研究螺纹钢锚杆在腐蚀性矿井水中的点蚀行为,采用金相、电化学及显微视频等手段,观测了4种锚杆点蚀发展过程并初步揭示其形成机制。结果表明,锚杆的点蚀易发生在夹杂物处,夹杂物及界面处基体优先溶解形成界面沟槽并出现局部酸化,从而进一步加速基体和夹杂物的溶解、脱落而形成点蚀坑;采用大小电极极化试验对比验证了界面沟槽对腐蚀的加速作用。
  • 图  1  试样加工方法及尺寸

    Figure  1.  Processing method and size of rockbolts samples

    图  2  两种材料显微组织照片

    Figure  2.  Microstructures of the 2 materials observed by OM

    图  3  氧化物夹杂形态及元素分布

    Figure  3.  Oxide inclusion morphology and elements mapping

    图  4  小电极封装示意图

    Figure  4.  The schematic of small electrode

    图  5  小电极测试及观测系统示意图

    Figure  5.  The schematic of test and observation apparatus for small electrode

    图  6  热处理600锚杆腐蚀后表面形貌

    Figure  6.  The surface morphology of HT600 after corrosion

    图  7  热轧500锚杆腐蚀过程样品表面形貌

    Figure  7.  The evolution of surface morphology of HR500 during the corrosion

    图  8  动电位极化后锚杆腐蚀形貌

    Figure  8.  The surface morphology of rockbolts after macro-scale polarization

    图  9  热轧335腐蚀前后夹杂物形貌

    Figure  9.  The inclusion morphology of HR335 before and after corrosion

    图  10  锚杆腐蚀演化及点蚀形成过程示意图

    Figure  10.  Schematic diagram of rockbolt corrosion evolution and pitting process

    图  11  小电极样品与大电极样品在模拟溶液中的极化曲线

    Figure  11.  Macro-scale and micro-scale polarization curves of different materials in simulating solution

    图  12  部分典型锚杆加工损伤

    Figure  12.  Part of typical machining damage of rockbolt

    表  1  锚杆钢材化学成分

    Table  1.   Chemical composition of rockbolts

    试样元素含量/%
    CSiMnPSCrNiMoCuV
    HR3350.280.310.780.0260.0260.0230.0170.0040.0190.003
    HR5000.230.371.490.0230.0280.0410.0240.0070.0280.068
    HT6000.210.461.520.0150.0070.0220.0100.0070.0130.050
    HT7000.230.481.530.0100.0060.0250.0090.0070.0140.047
    下载: 导出CSV

    表  2  非金属夹杂物检验结果

    Table  2.   Results of nonmetallic inclusion test

    锚杆非金属夹杂物/级DS
    ABCD
    HR3351000000.500
    HT6001000000.500
    注:A为硫化物类;B为氧化铝类;C为硅酸盐类;D为球状氧化物;DS为单颗粒球状类。
    下载: 导出CSV

    表  3  腐蚀性矿井水离子浓度

    Table  3.   Ion concentration of corrosive mine water

    离子类型离子浓度/(mg·L-1)
    双柳煤矿红庆河煤矿
    K+1.422.60
    Na+385288
    Ca2+3.969.43
    Mg2+1.203.43
    Cl-302321
    SO42-14.24203
    HCO3-558428
    CO32-024.06
    总矿化度1 2661 280
    下载: 导出CSV

    表  4  模拟溶液配比

    Table  4.   The proportion of simulated solution

    溶质NaClNaHCO3Na2SO4
    浓度/(mg·L-1)530589601
    下载: 导出CSV

    表  5  大小电极自腐蚀电流密度对比

    Table  5.   Comparison of self-corrosion current densities between small and large electrode

    材料大电极自腐蚀
    电流密度/(A·cm-2)
    小电极自腐蚀
    电流密度/(A·cm-2)
    HR3358.9×10-61.26×10-5
    HR5006.61×10-61.2×10-5
    HT6006.42×10-61.5×10-5
    HT7009.8×10-61.17×10-5
    下载: 导出CSV
  • [1] 吴拥政, 褚晓威, 吴建星, 等. 强力锚杆杆体断裂失效的微细观试验研究[J]. 煤炭学报, 2017, 42(3): 574-581. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201703004.htm

    Wu Yongzheng, Chu Xiaowei, Wu Jianxing, et al. Micro-mesoscopic test on fracture failure of intensive rock bolts[J]. Journal of China Coal Society, 2017, 42(3): 574-581. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201703004.htm
    [2] 李雨, 关蕾, 王冠, 等. 机械应力对不锈钢点蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(3): 215-226. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGFF201903002.htm

    Li Yu, Guan Lei, Wang Guan, et al. Influence of mechanical stresses on pitting corrosion of stainless steel[J]. Journal of Chinese Society for Corrosion and Protection, 2019, 39(3): 215-226. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGFF201903002.htm
    [3] Mai W J, Soghrati S. A phase field model for simulating the stress corrosion cracking initiated from pits[J]. Corrosion Science, 2017, 125: 87-98. doi: 10.1016/j.corsci.2017.06.006
    [4] Chen J, Diao B, He J J, et al. Equivalent surface defect model for fatigue life prediction of steel reinforcing bars with pitting corrosion[J]. International Journal of Fatigue, 2018, 110: 153-161. doi: 10.1016/j.ijfatigue.2018.01.019
    [5] Roberge P R. Handbook of corrosion engineering[M]. New York: McGraw-Hill, 2000.
    [6] Ramamurthy S, Atrens A. Stress corrosion cracking of high-strength steels[J]. Corrosion Reviews, 2013, 31(1): 1-31. doi: 10.1515/corrrev-2012-0018
    [7] 范颖芳, 周晶. 考虑蚀坑影响的锈蚀钢筋力学性能研究[J]. 建筑材料学报, 2003, 6(3): 248-252. doi: 10.3969/j.issn.1007-9629.2003.03.006

    Fan Yingfang, Zhou Jing. Mechanical property of rusty rebar considering the effects of corrosion pits[J]. Journal of Building Materials, 2003, 6(3): 248-252. doi: 10.3969/j.issn.1007-9629.2003.03.006
    [8] 叶继红, 申会谦, 薛素铎. 点蚀孔腐蚀钢构件力学性能劣化简化分析方法[J]. 哈尔滨工业大学学报, 2016, 48(12): 70-75. doi: 10.11918/j.issn.0367-6234.2016.12.009

    Ye Jihong, Shen Huiqian, Xue Suduo. Simplified analytical method of mechanical property degradation for steel members with pitting corrosion[J]. Journal of Harbin Institute of Technology, 2016, 48(12): 70-75. doi: 10.11918/j.issn.0367-6234.2016.12.009
    [9] 黄彦良, 余秀明. 高强度钢浪花飞溅区点蚀行为与机理[M]. 北京: 科学出版社, 2016.
    [10] Tsutsumi Y, Nishikata A, Tsuru T. Pitting corrosion mechanism of Type 304 stainless steel under a droplet of chloride solutions[J]. Corrosion Science, 2007, 49(3): 1394-1407. doi: 10.1016/j.corsci.2006.08.016
    [11] Pardo A, Merino M C, Coy A E, et al. Pitting corrosion behaviour of austenitic stainless steels-combining effects of Mn and Mo additions[J]. Corrosion Science, 2008, 50(6): 1796-1806. doi: 10.1016/j.corsci.2008.04.005
    [12] Kaneko M, Senuma T. Effects of S content and surface finish on pitting corrosion of austenitic stainless steels containing Mo in chloride and bromide solutions[J]. ISIJ International, 2005, 45(9): 1331-1334. doi: 10.2355/isijinternational.45.1331
    [13] Hassell R, Villaescusa E, Thompson A G, et al. Corrosion assessment of ground support systems[C]// Proceedings of the 5th International Symposium on Ground Support: Ground Support in Mining and Underground Construction. London: Taylor and Francis Group, 2004, 529-542.
    [14] Corrosion Institute of Southern Africa. Corrosion Control in Southern Africa[M]. South Africa: Mintek, 1994.
    [15] 陈学群, 常万顺, 陈德斌. 碳钢中夹杂物诱发点蚀的规律和特性研究[J]. 海军工程大学学报, 2004, 16(6): 30-36. doi: 10.3969/j.issn.1009-3486.2004.06.006

    Chen Xuequn, Chang Wanshun, Chen Debin. Law and feature of pitting caused by inclusion in carbon steel[J]. Journal of Naval University of Engineering, 2004, 16(6): 30-36. doi: 10.3969/j.issn.1009-3486.2004.06.006
    [16] 张春亚, 胡裕龙, 王国荣, 等. 低碳钢点蚀诱发部位的实验研究[J]. 腐蚀科学与防护技术, 2007, 19(3): 174-177. doi: 10.3969/j.issn.1002-6495.2007.03.006

    Zhang Chunya, Hu Yulong, Wang Guorong, et al. A study on pitting initiation site of carbon steels[J]. Corrosion Science and Protection Technology, 2007, 19(3): 174-177. doi: 10.3969/j.issn.1002-6495.2007.03.006
    [17] 张春亚, 陈学群, 陈德斌, 等. 不同低碳钢的点蚀诱发敏感性及诱发机理研究[J]. 中国腐蚀与防护学报, 2001, 21(5): 265-272 doi: 10.3969/j.issn.1005-4537.2001.05.002

    Zhang Chunya, Chen Xuequn, Chen Debin, et al. Research of pitting susceptibility in low carbon steels and mechanism of pitting initiation[J]. Journal of Chinese Society for Corrosion and Protection, 2001, 21(5): 265-272 doi: 10.3969/j.issn.1005-4537.2001.05.002
    [18] 武会宾, 王迪, 梁金明, 等. 夹杂物对低合金钢在酸性Cl-溶液环境中点蚀行为的影响[J]. 材料热处理学报, 2014, 35(12): 172-178. https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201412031.htm

    Wu Huibin, Wang Di, Liang Jinming, et al. Influence of inclusion on pitting corrosion behavior of low-alloy steel for bottom plates of cargo oil tanks[J]. Transactions of Materials and Heat Treatment, 2014, 35(12): 172-178. https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201412031.htm
    [19] 范益, 杨文秀, 杨英. 低合金钢中非金属夹杂物引起的点蚀初期行为研究[J]. 全面腐蚀控制, 2017, 31(1): 65-70. https://www.cnki.com.cn/Article/CJFDTOTAL-QMFK201701021.htm

    Fan Yi, Yang Wenxiu, Yang Ying. Research on initial pitting behavior caused by non metallic inclusions in low alloy steels[J]. Total Corrosion Control, 2017, 31(1): 65-70. https://www.cnki.com.cn/Article/CJFDTOTAL-QMFK201701021.htm
    [20] 刘青. 304不锈钢中典型夹杂物诱发腐蚀行为研究[D]. 北京: 北京科技大学, 2018.
    [21] 张弛, 张双杰, 冯捷, 等. 硫化物夹杂对钢点蚀行为的影响[J]. 金属热处理, 2016, 41(9): 62-65. https://www.cnki.com.cn/Article/CJFDTOTAL-JSRC201609013.htm

    Zhang Chi, Zhang Shuangjie, Feng Jie, et al. Effect of sulfide inclusions on pitting behavior of steel[J]. Heat Treatment of Metals, 2016, 41(9): 62-65. https://www.cnki.com.cn/Article/CJFDTOTAL-JSRC201609013.htm
    [22] Spearing A J S, Mondal K, Bylapudi G. The corrosion of rock bolts and a method to quantify the corrosion potential in mines[J]. CIM Journal, 2010, 1(3): 213-220. http://www.researchgate.net/publication/269106636_The_Corrosion_Of_Rock_Bolts_And_A_Method_To_Quantify_The_Corrosion_Potential_In_Mines
    [23] Gamboa E, Atrens A. Material influence on the stress corrosion cracking of rock bolts[J]. Engineering Failure Analysis, 2005, 12(2): 201-235. doi: 10.1016/j.engfailanal.2004.07.002
    [24] Craig P, Serkan S, Hagan P, et al. Investigations into the corrosive environments contributing to premature failure of Australian coal mine rock bolts[J]. International Journal of Mining Science and Technology, 2016, 26(1): 59-64. doi: 10.1016/j.ijmst.2015.11.011
    [25] Aziz N, Craig P, Nemcik J, et al. Rock bolt corrosion-an experimental study[J]. Mining Technology, 2014, 123(2): 69-77. doi: 10.1179/1743286314Y.0000000060
    [26] Wu S S, Ramandi H L, Chen H H, et al. Mineralogically influenced stress corrosion cracking of rockbolts and cable bolts in underground mines[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 119: 109-116. doi: 10.1016/j.ijrmms.2019.04.011
    [27] 王小伟, 朱杰兵, 李聪. pH和O2协同作用下预应力锚杆腐蚀损伤行为试验研究[J]. 岩土力学, 2019, 40(11): 4306-4312, 4370. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201911021.htm

    Wang Xiaowei, Zhu Jiebing, Li Cong. Experimental study on prestressed anchor bars corrosion damage behavior under the synergistic effect of pH and O2[J]. Rock and Soil Mechanics, 2019, 40(11): 4306-4312, 4370. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201911021.htm
    [28] 赵健, 冀文政, 曾宪明, 等. 应力腐蚀对锚杆使用寿命影响的试验研究[J]. 岩石力学与工程学报, 2007, 26(S1): 3427-3431. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S1126.htm

    Zhao Jian, Ji Wenzheng, Zeng Xianming, et al. Experimental study on durableness of anchor with stress corrosion[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S1): 3427-3431. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S1126.htm
    [29] 朱乾坤. 煤矿巷道树脂锚杆支护系统腐蚀现象试验研究[D]. 焦作: 河南理工大学, 2017.
    [30] Gamboa E, Atrens A. Environmental influence on the stress corrosion cracking of rock bolts[J]. Engineering Failure Analysis, 2003, 10(5): 521-558. doi: 10.1016/S1350-6307(03)00036-0
    [31] Vandermaat D, Saydam S, Hagan P C, et al. Examination of rockbolt stress corrosion cracking utilising full size rockbolts in a controlled mine environment[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 81: 86-95. doi: 10.1016/j.ijrmms.2015.11.007
    [32] Kang H, Wu Y, Gao F, et al. Fracture characteristics in rock bolts in underground coal mine roadways[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 62: 105-112. doi: 10.1016/j.ijrmms.2013.04.006
    [33] 靳德武, 葛光荣, 张全, 等. 高矿化度矿井水节能脱盐新技术[J]. 煤炭科学技术, 2018, 46(9): 12-18. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201809003.htm

    Jin Dewu, Ge Guangrong, Zhang Quan, et al. New energy-saving desalination technology of highly-mineralized mine water[J]. Coal Science and Technology, 2018, 46(9): 12-18. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201809003.htm
    [34] Lin B, Hu R, Ye C, et al. A study on the initiation of pitting corrosion in carbon steel in chloride-containing media using scanning electrochemical probes[J]. Electrochimica Acta, 2010, 55(22): 6542-6545. doi: 10.1016/j.electacta.2010.06.024
    [35] 赵景茂, 左禹, 熊金平. 碳钢在点蚀/缝隙腐蚀闭塞区模拟溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2002, 22(4) : 193-197. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGFF200204000.htm

    Zhao Jingmao, Zuo Yu, Xiong Jinping. Corrosion behavior of mild steel in simulated solutions within pits and crevices[J]. Journal of Chinese Society for Corrosion and Protection, 2002, 22(4): 193-197. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGFF200204000.htm
    [36] 陈华辉, 潘俊艳, 马峰, 等. 富锌防腐涂层在煤矿设备的应用及防腐机理研究[J]. 矿业科学学报, 2016, 1(1): 74-81. http://kykxxb.cumtb.edu.cn/article/id/12

    Chen Huahui, Pan Junyan, Ma Feng, et al. Corrosive protection mechanism of Zinc-rich coatings and application in coal mining equipment[J]. Journal of Mining Science and Technology, 2016, 1(1): 74-81. http://kykxxb.cumtb.edu.cn/article/id/12
    [37] 魏洁, 董俊华, 柯伟. 新型化学剂快速冷却热轧螺纹钢的防锈性能研究[J]. 腐蚀科学与防护技术, 2009, 21(5): 468-471. https://www.cnki.com.cn/Article/CJFDTOTAL-FSFJ200905009.htm

    Wei Jie, Dong Junhua, Ke Wei. Corrosion resistance of hot rolled rebar quenched with a new chemical reagent[J]. Corrosion Science and Protection Technology, 2009, 21(5): 468-471. https://www.cnki.com.cn/Article/CJFDTOTAL-FSFJ200905009.htm
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  440
  • HTML全文浏览量:  186
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-07
  • 修回日期:  2021-01-15
  • 刊出日期:  2021-06-01

目录

    /

    返回文章
    返回