留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混凝土时间相关断裂模型研究综述

陈宇龙 曹鹏

陈宇龙, 曹鹏. 混凝土时间相关断裂模型研究综述[J]. 矿业科学学报, 2021, 6(3): 290-295. doi: 10.19606/j.cnki.jmst.2021.03.005
引用本文: 陈宇龙, 曹鹏. 混凝土时间相关断裂模型研究综述[J]. 矿业科学学报, 2021, 6(3): 290-295. doi: 10.19606/j.cnki.jmst.2021.03.005
Chen Yulong, Cao Peng. Review of time-dependent fracture model of concrete[J]. Journal of Mining Science and Technology, 2021, 6(3): 290-295. doi: 10.19606/j.cnki.jmst.2021.03.005
Citation: Chen Yulong, Cao Peng. Review of time-dependent fracture model of concrete[J]. Journal of Mining Science and Technology, 2021, 6(3): 290-295. doi: 10.19606/j.cnki.jmst.2021.03.005

混凝土时间相关断裂模型研究综述

doi: 10.19606/j.cnki.jmst.2021.03.005
基金项目: 

国家自然科学基金 52009131

国家自然科学基金 51769028

详细信息
    作者简介:

    陈宇龙(1988—),男,四川泸州人,讲师,主要从事岩石力学与工程等方面的研究工作。Tel: 18311040900,E-mail: chenyulong@cumtb.edu.cn

    通讯作者:

    曹鹏(1983—),男,辽宁鞍山人,讲师,主要从事材料多尺度分析等方面的研究工作。Tel: 18600713420,E-mail: caopeng 518888@126.com

  • 中图分类号: TU452

Review of time-dependent fracture model of concrete

  • 摘要: 混凝土结构在强震作用下的完整性以及带缝服役的稳定性关系到重大国家安全战略。这两个问题本质都涉及混凝土的时间相关断裂行为。混凝土材料时域相关的断裂行为可以笼统地概括为两个方面,即短时间在动态冲击荷载下的冲击断裂破坏和长时间稳态的蠕变断裂破坏。虽然两者都与时间存在关系,但是荷载作用时间却存在巨大的差异,这导致了混凝土动态破坏的内在机理迥异。本文综述了混凝土时间相关断裂模型研究的发展历程和主要成果,包括:宏观混凝土断裂力学模型与方法、细观混凝土断裂力学模型与方法、混凝土蠕变断裂行为研究。
  • [1] 沈新普, 鲍文博, 沈国晓. 混凝土断裂与损伤[M]. 北京: 冶金工业出版社, 2004.
    [2] Kaplan M. Crack propagation and the fracture of concrete[J]. ACI Journal Proceedings, 1961, 58(11): 591-610. http://www.researchgate.net/publication/309546953_Crack_propagation_and_the_fracture_of_concrete
    [3] Ngo D, Scordelis A. Finite element analysis of reinforced concrete beams[J]. ACI Journal Proceedings, 1967, 64(3): 152-163. http://ci.nii.ac.jp/naid/10003194327
    [4] Rashid Y R. Ultimate strength analysis of prestressed concrete pressure vessels[J]. Nuclear Engineering and Design, 1968, 7(4): 334-344. doi: 10.1016/0029-5493(68)90066-6
    [5] Hillerborg A, Modéer M, Petersson P E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[J]. Cement and Concrete Research, 1976, 6(6): 773-781. doi: 10.1016/0008-8846(76)90007-7
    [6] Bažant Z P, Oh B H. Crack band theory for fracture of concrete[J]. Matériaux et Construction, 1983, 16(3): 155-177. doi: 10.1007/BF02486267
    [7] Jenq Y, Shah S P. Two parameter fracture model for concrete[J]. Journal of Engineering Mechanics, 1985, 111(10): 1227-1241. doi: 10.1061/(ASCE)0733-9399(1985)111:10(1227)
    [8] 徐世烺. 混凝土断裂力学[M]. 北京: 科学出版社, 2011.
    [9] Ince R. Determination of concrete fracture parameters based on two-parameter and size effect models using split-tension cubes[J]. Engineering Fracture Mechanics, 2010, 77(12): 2233-2250. doi: 10.1016/j.engfracmech.2010.05.007
    [10] Kumar S, Barai S V. Determining double-K fracture parameters of concrete for compact tension and wedge splitting tests using weight function[J]. Engineering Fracture Mechanics, 2009, 76(7): 935-948. doi: 10.1016/j.engfracmech.2008.12.018
    [11] Krajcinovic D, Fanella D. A micromechanical damage model for concrete[J]. Engineering Fracture Mechanics, 1986, 25(5/6): 585-596. http://www.sciencedirect.com/science/article/pii/001379448690024X
    [12] Mazars J. A description of micro-and macroscale damage of concrete structures[J]. Engineering Fracture Mechanics, 1986, 25(5/6): 729-737. http://www.sciencedirect.com/science/article/pii/0013794486900366
    [13] Suaris W, Shah S P. Constitutive model for dynamic loading of concrete[J]. Journal of Structural Engineering, 1985, 111(3): 563-576. doi: 10.1061/(ASCE)0733-9445(1985)111:3(563)
    [14] Li Q B, Zhang C H, Wang G L. Dynamic damage constitutive model of concrete in uniaxial tension[J]. Engineering Fracture Mechanics, 1996, 53(3): 449-455. doi: 10.1016/0013-7944(95)00123-9
    [15] Pijaudier-Cabot G, Bažant Z P. Nonlocal damage theory[J]. Journal of Engineering Mechanics, 1987, 113(10): 1512-1533. doi: 10.1061/(ASCE)0733-9399(1987)113:10(1512)
    [16] Lemaitre J, Desmorat R. Engineering damage mechanics[M]. Springer Berlin Heidelberg, 2005.
    [17] 唐欣薇, 张楚汉. 随机骨料投放的分层摆放法及有限元坐标的生成[J]. 清华大学学报: 自然科学版, 2008, 48(12): 2048-2052. doi: 10.3321/j.issn:1000-0054.2008.12.006

    Tang Xinwei, Zhang Chuhan. Layering disposition and FE coordinate generation for random aggregate arrangements[J]. Journal of Tsinghua University: Science and Technology, 2008, 48(12): 2048-2052. doi: 10.3321/j.issn:1000-0054.2008.12.006
    [18] 唐欣薇, 张楚汉. 基于改进随机骨料模型的混凝土细观断裂模拟[J]. 清华大学学报: 自然科学版, 2008, 48(3): 348-351, 356. doi: 10.3321/j.issn:1000-0054.2008.03.012

    Tang Xinwei, Zhang Chuhan. Simulation of meso-fracture for concrete based on the developed random aggregate model[J]. Journal of Tsinghua University: Science and Technology, 2008, 48(3): 348-351, 356. doi: 10.3321/j.issn:1000-0054.2008.03.012
    [19] 李运成, 马怀发, 陈厚群, 等. 混凝土随机凸多面体骨料模型生成及细观有限元剖分[J]. 水利学报, 2006, 37(5): 588-592. doi: 10.3321/j.issn:0559-9350.2006.05.012

    Li Yuncheng, Ma Huaifa, Chen Houqun, et al. Approach to generation of random convex polyhedral aggregate model and plotting for concrete meso-mechanics[J]. Journal of Hydraulic Engineering, 2006, 37(5): 588-592. doi: 10.3321/j.issn:0559-9350.2006.05.012
    [20] 杜修力, 田瑞俊, 彭一江. 预静载对全级配混凝土梁动弯拉强度的影响[J]. 地震工程与工程振动, 2009, 29(2): 98-102. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200902014.htm

    Du Xiuli, Tian Ruijun, Peng Yijiang. Influence of initial static loading on dynamical bending strength of fully-graded concrete beam[J]. Journal of Earthquake Engineering and Engineering Vibration, 2009, 29(2): 98-102. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200902014.htm
    [21] 马怀发, 陈厚群, 黎保琨. 预静载作用下混凝土梁的动弯拉强度[J]. 中国水利水电科学研究院学报, 2005, 3(3): 168-172, 178. doi: 10.3969/j.issn.1672-3031.2005.03.002

    Ma Huaifa, Chen Houqun, Li Baokun. The concrete dynamical bending strength under static pre-loading[J]. Journal of China Institute of Water, 2005, 3(3): 168-172, 178. doi: 10.3969/j.issn.1672-3031.2005.03.002
    [22] 马怀发, 陈厚群, 阳昌陆. 复杂动荷载作用下全级配混凝土损伤机理细观数值试验[J]. 土木工程学报, 2012, 45(7): 175-182. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201207024.htm

    Ma Huaifa, Chen Houqun, Yang Changlu. Numerical tests of meso-scale damage mechanism for full graded concrete under complicated dynamic loads[J]. China Civil Engineering Journal, 2012, 45(7): 175-182. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201207024.htm
    [23] Wu M X, Chen Z F, Zhang C H. Determining the impact behavior of concrete beams through experimental testing and meso-scale simulation: Ⅰ. Drop-weight tests[J]. Engineering Fracture Mechanics, 2015, 135: 94-112. doi: 10.1016/j.engfracmech.2014.12.019
    [24] Wu M X, Zhang C H, Chen Z F. Determining the impact behavior of concrete beams through experimental testing and meso-scale simulation: Ⅱ. Particle element simulation and comparison[J]. Engineering Fracture Mechanics, 2015, 135: 113-125. doi: 10.1016/j.engfracmech.2014.12.020
    [25] Xu R, Yang X H, Yin A Y, et al. A three-dimensional aggregate generation and packing algorithm for modeling asphalt mixture with graded aggregates[J]. Journal of Mechanics, 2010, 26(2): 165-171. doi: 10.1017/S1727719100003026
    [26] Yin A Y, Yang X H, Yang S F, et al. Multiscale fracture simulation of three-point bending asphalt mixture beam considering material heterogeneity[J]. Engineering Fracture Mechanics, 2011, 78(12): 2414-2428. doi: 10.1016/j.engfracmech.2011.06.001
    [27] 张浩博, 黄松梅. 混凝土的徐变断裂[J]. 水利学报, 1995, 26(6): 57-61, 56. doi: 10.3321/j.issn:0559-9350.1995.06.009

    Zhang Haobo, Huang Songmei. Creep fracture for concrete[J]. Journal of Hydraulic Engineering, 1995, 26(6): 57-61, 56. doi: 10.3321/j.issn:0559-9350.1995.06.009
    [28] Resende L. A Damage mechanics constitutive theory for the inelastic behaviour of concrete[J]. Computer Methods in Applied Mechanics and Engineering, 1987, 60(1): 57-93. doi: 10.1016/0045-7825(87)90130-7
    [29] 郭少华. 混凝土蠕变损伤分析模型[J]. 西安建筑科技大学学报, 1995, 27(3): 299-303. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJZ503.011.htm

    Guo Shaohua. Damage model of concrete creep[J]. Journal of Xi'an University of Architecture & Technology, 1995, 27(3): 299-303. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJZ503.011.htm
    [30] Bažant Z P, Chern J C. Strain softening with creep and exponential algorithm[J]. Journal of Engineering Mechanics, 1985, 111(3): 391-415. doi: 10.1061/(ASCE)0733-9399(1985)111:3(391)
    [31] 徐涛, 林皋, 唐春安, 等. 拉伸载荷作用下混凝土蠕变-损伤破坏过程数值模拟[J]. 土木工程学报, 2007, 40(1): 28-33. doi: 10.3321/j.issn:1000-131X.2007.01.005

    Xu Tao, Lin Gao, Tang Chun'an, et al. Numerical simulation of creep-damage failure process of concrete under sustained tensile loading[J]. China Civil Engineering Journal, 2007, 40(1): 28-33. doi: 10.3321/j.issn:1000-131X.2007.01.005
    [32] Arzt E, Wilkinson D S. Threshold stresses for dislocation climb over hard particles: The effect of an attractive interaction[J]. Acta Metallurgica, 1986, 34(10): 1893-1898. doi: 10.1016/0001-6160(86)90247-6
    [33] Böck N, Kager F. Finite element simulation of the creep behaviour of 9 % chromium steels based on micromechanical considerations[C]. Materials Science and Technology 2005 Conference and Exhibition, Pittsburgh, PA, USA, 2005.
    [34] Fournier B, Sauzay M, Pineau A. Micromechanical model of the high temperature cyclic behavior of 9 % -12 % Cr martensitic steels[J]. International Journal of Plasticity, 2011, 27(11): 1803-1816. doi: 10.1016/j.ijplas.2011.05.007
    [35] Sklenička V, Kuchařová K, Dlouhy A, et al. Creep behaviour and microstructure of a 9 % Cr steel[C]//Materials for Advanced Power Engineering 1994. Dordrecht: Springer Netherlands, 1994: 435-444.
    [36] Graham A, Walles K F A. Relations between long and short time properties of commercial alloys[J]. JISI, 1955, 193: 105.
    [37] Phillips P. The slow stretch in indiarubber, glass, and metal wires when subjected to a constant pull[J]. Proceedings of the Physical Society of London, 1903, 19(1): 491-511. doi: 10.1088/1478-7814/19/1/342
    [38] Conway J B, Mullikin M J. An evaluation of various first stage creep equations[C]. Proceedings of AIME conference, Detroit, Michegan, 1962.
    [39] Norton F N. The creep of steel at high temperature[M]. New York: McGraw-Hill, 1929.
    [40] Nadai A. The influence of time upon creep. The hyperbolic sine creep law. Stephen Timoshenko anniversary volume[M]. New York: Macmillan, 1938. http://www.researchgate.net/publication/268898966_The_influence_of_time_upon_creep_The_hyperbolic_sine_creep_law
    [41] Kachanov L M. Rupture time under creep conditions[J]. International Journal of Fracture, 1999, 97(1/2/3/4): 11-18. http://www.springerlink.com/content/v41gv32217w82567/
    [42] Rabotnov Y N. Creep problems in structural members[M]. Amsterdam: North-Holland Pub. Co.
    [43] Hayhurst D R, Brown P R, Morrison C J. The role of continuum damage in creep crack growth[J]. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences, 1984, 311(1516): 131-158. doi: 10.1098/rsta.1984.0022
    [44] Hall F R, Hayhurst D R, Brown P R. Prediction of plane-strain creep-crack growth using continuum damage mechanics[J]. International Journal of Damage Mechanics, 1996, 5(4): 353-383. doi: 10.1177/105678959600500402
    [45] Hayhurst D R. CDM mechanisms-based modelling of tertiary creep: ability to predict the life of engineering components[J]. Archives of Mechanics, 2005, 57(2/3): 103-132. http://www.researchgate.net/publication/268893253_CDM_mechanisms-based_modelling_of_tertiary_creep_Ability_to_predict_the_life_of_engineering_components
    [46] Saanouni K, Chaboche J L, Bathias C. On the creep crack growth prediction by a local approach[J]. Engineering Fracture Mechanics, 1986, 25(5/6): 677-691. http://www.sciencedirect.com/science/article/pii/0013794486900329
    [47] Benallal A, Billardon R, Lemaitre J. Continuum damage mechanics and local approach to fracture: Numerical procedures[J]. Computer Methods in Applied Mechanics and Engineering, 1991, 92(2): 141-155. doi: 10.1016/0045-7825(91)90236-Y
    [48] Liu Y, Murakami S. Damage localization of conventional creep damage models and proposition of a new model for creep damage analysis[J]. JSME International Journal Series A, 1998, 41(1): 57-65. doi: 10.1299/jsmea.41.57
    [49] Murakami S, Liu Y, Mizuno M. Computational methods for creep fracture analysis by damage mechanics[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 183(1/2): 15-33. http://www.sciencedirect.com/science/article/pii/S0045782599002091
    [50] Mclean M, Dyson B F. Modeling the effects of damage and microstructural evolution on the creep behavior of engineering alloys[J]. Journal of Engineering Materials and Technology, 2000, 122(3): 273-278. doi: 10.1115/1.482798
    [51] Hyde T H, Becker A A, Sun W, et al. Finite-element creep damage analyses of P91 pipes[J]. International Journal of Pressure Vessels and Piping, 2006, 83(11/12): 853-863. http://www.sciencedirect.com/science/article/pii/S0308016106001542
    [52] Cocks A C F, Ashby M F. Intergranular fracture during power-law creep under multiaxial stresses[J]. Metal Science, 1980, 14(8/9): 395-402. doi: 10.1179/030634580790441187
    [53] Chilukuru H, Durst K, Wadekar S, et al. Coarsening of precipitates and degradation of creep resistance in tempered martensite steels[J]. Materials Science and Engineering: A, 2009, 510/511: 81-87. doi: 10.1016/j.msea.2008.04.088
    [54] Basirat M, Shrestha T, Potirniche G P, et al. A study of the creep behavior of modified 9Cr-1Mo steel using continuum-damage modeling[J]. International Journal of Plasticity, 2012, 37: 95-107. doi: 10.1016/j.ijplas.2012.04.004
  • 加载中
计量
  • 文章访问数:  44
  • HTML全文浏览量:  12
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-08
  • 修回日期:  2021-02-03
  • 刊出日期:  2021-06-01

目录

    /

    返回文章
    返回