留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深层金属矿原位流态化开采构想

吴爱祥 王洪江 尹升华 阮竹恩

吴爱祥, 王洪江, 尹升华, 阮竹恩. 深层金属矿原位流态化开采构想[J]. 矿业科学学报, 2021, 6(3): 255-260. doi: 10.19606/j.cnki.jmst.2021.03.001
引用本文: 吴爱祥, 王洪江, 尹升华, 阮竹恩. 深层金属矿原位流态化开采构想[J]. 矿业科学学报, 2021, 6(3): 255-260. doi: 10.19606/j.cnki.jmst.2021.03.001
Wu Aixiang, Wang Hongjiang, Yin Shenghua, Ruan Zhuen. Conception of in-situ fluidization mining for deep metal mines[J]. Journal of Mining Science and Technology, 2021, 6(3): 255-260. doi: 10.19606/j.cnki.jmst.2021.03.001
Citation: Wu Aixiang, Wang Hongjiang, Yin Shenghua, Ruan Zhuen. Conception of in-situ fluidization mining for deep metal mines[J]. Journal of Mining Science and Technology, 2021, 6(3): 255-260. doi: 10.19606/j.cnki.jmst.2021.03.001

深层金属矿原位流态化开采构想

doi: 10.19606/j.cnki.jmst.2021.03.001
基金项目: 

国家自然科学基金重点资助项目 51834001

详细信息
    作者简介:

    吴爱祥(1963—),湖北仙桃人,教授,博士,主要从事地下金属矿高效绿色开采等方面的研究工作

    通讯作者:

    阮竹恩(1989—),湖北恩施人,博士,主要从事金属矿膏体充填理论与技术的研究工作。Tel: 010-62334680,E-mail: ustb_ruanzhuen@hotmail.com

  • 中图分类号: TD853

Conception of in-situ fluidization mining for deep metal mines

  • 摘要: 我国浅部金属矿资源已趋于枯竭,逐渐转入1 000 m以深的开采。深地金属矿床开采面临着高应力、高井温、高井深的特殊开采环境,采用传统的采矿模式难以实现深部资源的安全高效经济开采。结合深层金属矿产资源开采的趋势,本文提出并阐述深层金属矿产资源的原位流态化开采构想的定义、具体内容与挑战。根据转化方式,将深层金属矿原位流态化开采分为深层金属矿原位溶浸开采和采选充一体化两个方向。基于深层金属矿原位流态化开采构想,阐述了在深层岩体力学、原位溶浸开采理论、采选充一体化装备、开采环境监控及再造、智能高效开采等方面所面临的重大课题与挑战。
  • 图  1  原位溶浸开采示意图

    Figure  1.  Schematic in-situ leaching

    图  2  深层金属矿采选充一体化示意图

    Figure  2.  Schematic for integration of mining, processing and backfilling in deep metal mines

    图  3  TBM式采选充舱示意图

    Figure  3.  Schematic TBM tank of mining, processing and backfilling

    图  4  GEKKO公司采选充一体化系统

    (根据文献[27]修改)

    Figure  4.  Schematic integration system of mining, processing and backfilling by GEKKO

    (Modified from Ref.[27])

  • [1] 新华社. 我国十种有色金属产量首次突破6000万吨. [EB/OL]. (2021-01-30)[2021-02-8]. http://www.gov.cn/xinwen/2021-01/30/content_5583763.htm.
    [2] 蔡美峰, 薛鼎龙, 任奋华. 金属矿深部开采现状与发展战略[J]. 工程科学学报, 2019, 41(4): 417-426. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201904001.htm

    Cai Meifeng, Xue Dinglong, Ren Fenhua. Current status and development strategy of metal mines[J]. Chinese Journal of Engineering, 2019, 41(4): 417-426. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201904001.htm
    [3] 吴爱祥, 王勇, 张敏哲, 等. 金属矿山地下开采关键技术新进展与展望[J]. 金属矿山, 2021, 535(1): 1-13.

    Wu Aixiang, Wang Yong, Zhang Minzhe, et al. New development and prospect of key technology in undergrou-nd mining of metal mines[J]. Metal Mine, 2021, 535(1): 1-13.
    [4] 谢和平, 高峰, 鞠杨, 等. 深地煤炭资源流态化开采理论与技术构想[J]. 煤炭学报, 2017, 42(3): 547-556. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201703001.htm

    Xie Heping, Gao Feng, Ju Yang, et al. Theoretical and technological conception of the fluidization mining for deep coal resources[J]. Journal of China Coal Society, 2017, 42(3): 547-556. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201703001.htm
    [5] 古德生, 周科平. 现代金属矿业的发展主题[J]. 金属矿山, 2012, 433(7): 1-8. doi: 10.3969/j.issn.1001-1250.2012.07.001

    Gu Desheng, Zhou Keping. Development theme of the modern metal mining[J]. Metal Mine, 2012, 433(7): 1-8. doi: 10.3969/j.issn.1001-1250.2012.07.001
    [6] 谢和平, 高峰, 鞠杨, 等. 深地科学领域的若干颠覆性技术构想和研究方向[J]. 工程科学与技术, 2017, 49(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201701001.htm

    Xie Heping, Gao Feng, Ju Yang, et al. Novel idea and disruptive technologies for the exploration and research of deep earth[J]. Advanced Engineering Sciences, 2017, 49(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201701001.htm
    [7] 钱七虎. 深部岩体工程响应的特征科学现象及"深部"的界定[J]. 东华理工学院学报, 2004, 27(1): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-HDDZ200401001.htm

    Qian Qihu. The characteristic scientific phenomena of engineering response to deep rock mass and the implication of deepness[J]. Journal of East China Institute of Technology, 2004, 27(1): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-HDDZ200401001.htm
    [8] 何满潮. 深部的概念体系及工程评价指标[J]. 岩石力学与工程学报, 2005, 24(16): 2854-2858. doi: 10.3321/j.issn:1000-6915.2005.16.007

    He Manchao. Conception system and evaluation indexes for deep engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(16): 2854-2858. doi: 10.3321/j.issn:1000-6915.2005.16.007
    [9] 谢和平, 高峰, 鞠杨, 等. 深部开采的定量界定与分析[J]. 煤炭学报, 2015, 40(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201501001.htm

    Xie Heping, Gao Feng, Ju Yang, et al. Quantitative definition and investigation of deep mining[J]. Journal of China Coal Society, 2015, 40(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201501001.htm
    [10] 李夕兵, 周健, 王少锋, 等. 深部固体资源开采评述与探索[J]. 中国有色金属学报, 2017, 27(6): 1236-1262. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201706022.htm

    Li Xibing, Zhou Jian, Wang Shaofeng, et al. Review and practice of deep mining for solid mineral resources[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(6): 1236-1262. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201706022.htm
    [11] 古德生, 李夕兵. 现代金属矿床开采科学技术[M]. 北京: 冶金工业出版社, 2006.
    [12] 谢和平, 王金华, 鞠杨. 煤炭革命的战略与方向[M]. 北京: 科学出版社, 2018.
    [13] Ghorbani Y, Franzidis J P, Petersen J. Heap leaching technology-current state, innovations, and future directions: a review[J]. Mineral Processing and Extractive Metallurgy Review, 2016, 37(2): 73-119. doi: 10.1080/08827508.2015.1115990
    [14] Seredkin M, Zabolotsky A, Jeffress G. In situ recovery, an alternative to conventional methods of mining: Exploration, resource estimation, environmental issues, project evaluation and economics[J]. Ore Geology Reviews, 2016, 79: 500-514. doi: 10.1016/j.oregeorev.2016.06.016
    [15] Ilankoon I M S K, Tang Y, Ghorbani Y, et al. The current state and future directions of percolation leaching in the Chinese mining industry: Challenges and opportunities[J]. Minerals Engineering, 2018, 125: 206-222. doi: 10.1016/j.mineng.2018.06.006
    [16] 李金龙, 李得春. 低品位原生黄铜矿生物浸出技术的应用实践[J]. 铜业工程, 2006(2): 7-10. doi: 10.3969/j.issn.1009-3842.2006.02.003

    Li Jinlong, Li Dechun. The practice of low grade primary chalcopyrite bacteria leaching technology[J]. Copper Engineering, 2006(2): 7-10. doi: 10.3969/j.issn.1009-3842.2006.02.003
    [17] He Z G, Xie X H, Xiao S M, et al. Microbial diversity of mine water at Zhong Tiaoshan copper mine, China[J]. Journal of Basic Microbiology, 2007, 47(6): 485-495. doi: 10.1002/jobm.200700219
    [18] Bhargava S K, Ram R, Pownceby M, et al. A review of acid leaching of uraninite[J]. Hydrometallurgy, 2015, 151: 10-24. doi: 10.1016/j.hydromet.2014.10.015
    [19] 尹升华, 王雷鸣, 吴爱祥, 等. 我国铜矿微生物浸出技术的研究进展[J]. 工程科学学报, 2019, 41(2): 143-158. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201902001.htm

    Yin Shenghua, Wang Leiming, Wu Aixiang, et al. Progress of research in copper bioleaching technology in China[J]. Chinese Journal of Engineering, 2019, 41(2): 143-158. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201902001.htm
    [20] Rawlings D E, Dew D, du Plessis C. Biomineralization of metal-containing ores and concentrates[J]. Trends in Biotec-hnology, 2003, 21(1): 38-44. doi: 10.1016/S0167-7799(02)00004-5
    [21] Brierley C L, Brierley J A. Progress in bioleaching: part B: applications of microbial processes by the minerals industries[J]. Applied Microbiology and Biotechnology, 2013, 97(17): 7543-7552. doi: 10.1007/s00253-013-5095-3
    [22] 梁卫国, 赵阳升, 徐素国, 等. 原位溶浸采矿理论研究[J]. 太原理工大学学报, 2012, 43(3): 382-387. doi: 10.3969/j.issn.1007-9432.2012.03.030

    Liang Weiguo, Zhao Yangsheng, Xu Suguo, et al. Theoretical study of in situ solution mining[J]. Journal of Taiyuan University of Technology, 2012, 43(3): 382-387. doi: 10.3969/j.issn.1007-9432.2012.03.030
    [23] 李宏煦, 董清海, 苍大强, 等. 高温浸矿菌Sulfolobus的生长及浸矿性能[J]. 北京科技大学学报, 2007, 29(1): 20-24. doi: 10.3321/j.issn:1001-053X.2007.01.005

    Li Hongxu, Dong Qinghai, Cang Daqiang, et al. Thermophilic microorganism sulfolobus growth and leaching chalcopyrite properties[J]. Journal of University of Science and Technology Beijing, 2007, 29(1): 20-24. doi: 10.3321/j.issn:1001-053X.2007.01.005
    [24] 梁长利. 黄铜矿高温生物浸出机理和硫形态转化研究[D]. 长沙: 中南大学, 2011.
    [25] 丁建南. 几种高温浸矿菌的分离鉴定及其应用基础与浸矿潜力研究[D]. 长沙: 中南大学, 2007.
    [26] Baines J, Bell T, Grigg N. Underground mineral processing-gekko systems modular Python[C]// Proceedings of the first international conference on underground mining technology. Australian Centre for Geomechan-ics, Perth, 2017: 625-635.
    [27] Hughes T R, Gray A H. The modular Python processing plant-designed for underground preconcentration[J]. Mining, Metallurgy & Exploration, 2010, 27(2): 89-96. http://forest.ckcest.cn/d/hxwx/AVkJPWIM49MUqoKBNNCp.html
    [28] Dominy S C, Gray A H, Daffern T J. Development of underground gold processing plants[C]//International Mineral Processing Congress, Brisbane QLD Australia, 2010.
    [29] 邵安林. 矿产资源开发地下采选一体化系统[M]. 北京: 冶金工业出版社, 2012.
    [30] 孙豁然, 毛凤海, 柳小波, 等. 矿产资源地下采选一体化系统研究[J]. 金属矿山, 2010(4): 15-19. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201004006.htm

    Sun Huoran, Mao Fenghai, Liu Xiaobo, et al. Research of the integration system of underground mining and beneficiation for underground mineral resources[J]. Metal Mine, 2010(4): 15-19. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201004006.htm
    [31] 唐廷宇, 陈福民. 张家湾铁矿地下采选联合开采新思路[J]. 矿业工程, 2015, 13(5): 11-12. doi: 10.3969/j.issn.1671-8550.2015.05.004

    Tang Tingyu, Chen Fumin. New ideas for combined mining of Zhangjiawan iron ore underground mining and concentration[J]. Mining Engineering, 2015, 13(5): 11-12. doi: 10.3969/j.issn.1671-8550.2015.05.004
    [32] 许洪亮, 姜仁义. 地下采选一体化工程关键技术及设计实践[J]. 金属矿山, 2016, 484(10): 50-53. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201610012.htm

    Xu Hongliang, Jiang Renyi. Key technology and design practice of integration of underground mining and beneficiation engineering[J]. Metal Mine, 2016, 484(10): 50-53. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201610012.htm
    [33] 孙传尧, 宋振国. 地下采选一体化系统的研究及应用概况[J]. 矿冶, 2017, 26(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-KYZZ201701001.htm

    Sun Chuanyao, Song Zhenguo. Development and application outline of integrated underground mining-processing system[J]. Mining and Metallurgy, 2017, 26(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-KYZZ201701001.htm
    [34] 吴爱祥, 王洪江. 金属矿膏体充填理论与技术[M]. 北京: 科学出版社, 2015.
    [35] 吴爱祥, 杨莹, 程海勇, 等. 中国膏体技术发展现状与趋势[J]. 工程科学学报, 2018, 40(5): 517-525. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201805001.htm

    Wu Aixiang, Yang Ying, Cheng Haiyong, et al. Status and prospects of paste technology in China[J]. Chinese Journal of Engineering, 2018, 40(5): 517-525. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201805001.htm
    [36] 吴爱祥, 李红, 杨柳华, 等. 深地开采, 膏体先行[J]. 黄金, 2020, 41(9): 51-57. https://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ202009008.htm

    Wu Aixiang, Li Hong, Yang Liuhua, et al. Cemented paste backfill paves the way for deep mining[J]. Gold, 2020, 41(9): 51-57. https://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ202009008.htm
    [37] 吴爱祥, 王勇, 周旭, 等. 一种移动式智能化膏体充填系统: 中国, 201910046389.6[P]. 2020-05-12.
    [38] 谢和平. 深部岩体力学与开采理论研究进展[J]. 煤炭学报, 2019, 44(5): 1283-1305. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201905002.htm

    Xie Heping. Research review of the state key research development program of China: Deep rock mechanics and mining theory[J]. Journal of China Coal Society, 2019, 44(5): 1283-1305. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201905002.htm
  • 加载中
图(4)
计量
  • 文章访问数:  107
  • HTML全文浏览量:  9
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-28
  • 修回日期:  2021-03-29
  • 刊出日期:  2021-06-01

目录

    /

    返回文章
    返回