基于Shearlet变换的探地雷达数据噪声压制研究

GPR data noise attenuation based on the Shearlet transform

  • 摘要: 应用探地雷达(GPR)探测地下目标分布状况时,接收数据中的有效信号往往容易受噪声及空气直达波等的干扰,增加地下目标识别的难度,影响地下目标识别的准确性.Shearlet变换在图像和地震数据去噪上的成功应用说明其去噪能力的优越性.但应用Shearlet变换对数据进行降噪处理时,阈值的选择对去噪效果影响较大.为了提高应用Shearlet变换对探地雷达数据进行去噪处理时的效果,本文提出了一种结合奇异值分解的Shearlet变换噪声压制方法.该方法能有效去除随机噪声,增强有效反射信号.将该方法应用到仿真和实测探地雷达数据处理中,结果证实了该方法的有效性.

     

    Abstract: When using ground penetrating radar(GPR)to detect the underground target distribution,valid signal in receiving data tend to be susceptible to noise and the interference of air-ground waves,which will affect the accuracy of target recognition and increase the difficulty of target recognitionThe successful application of Shearlet transform in image and seismic data shows its superiority for denoising processWhen using the Shearlet transform to reduce the noise of the data,the choice of threshold has a great influence on the denoising effectIn order to improve the denoising effect for radar data,a novel denosing method combining singular value decomposition(SVD)method for suppression of random noise to enhance the reflection signal caused by underground targetsThe method is applied to process was proposed the simulation and field datasets,and the experimental results show that the method is effective

     

/

返回文章
返回