Abstract:
Inordertosolvethemeasurementproblemoftheproductioncapacityofthedragline,apredictionmethodbasedongraycorrelationcombinedwithGA-BP neuralnetworkisproposed.Thegray correlationanalysisiscarriedoutonthe12influencingfactorsaffectingtheproductioncapacityofthe dragline,andtheactualworkinghours,the out rate,the effective casting blast amount,and effective throw-outrateareselected.Fourinfluencingfactorsgreaterthan0.7wereusedasinputvariablesand themonthlyproductioncapacityofthedraglinewasusedastheoutputvariabletoestablishGA-BPneu
ralnetworkandBPneuralnetworkpredictionmodel.Theresultsshowthatthemaximumrelativeerror ofGA-BPneuralnetworkis7.525%,theaveragerelativeerroris3.52%,theaverageerrorvarianceis 0.0156,andthenumberofiterationsis18times.TheperformanceisbetterthantheconventionalBP neuralnetwork.TheGA-BPneuralnetworkmodelprovidesbetterandmoreaccurategeneralizationperformancefortheproductioncapacityofthedragline,andprovidesamoreeffectivemethodforpredicting theproductioncapacityofthedragline.