[1]
|
吴初国.美俄矿产资源评价工作比较[J].国土资源情报,2011(129):16-19.Wu Chuguo. The comparison of mineral resources evaluation in the United States and Russia[J]. Land and Resources Information, 2011(129):16-19.
|
[2]
|
陈永清, 陈建国, 汪新庆,等.基于GIS矿产资源综合定量评价技术[M].北京:地质出版社, 2008:194-198.
|
[3]
|
陈毅松,汪国平,董士海.基于支持向量机的渐进直推式分类学习算法[J].软件学报,2003,14(3):451-460.Chen Yisong, Wang Guoping, Dong Shihai. A progressive transductive inference algorithm based on support vector machine[J]. Journal of Software, 2003,14(3):451-460.
|
[4]
|
严冰,阳正熙,周莉,等. 证据权法成矿预测模型结合分形模型在成矿预测中的应用研究[J].矿业研究与开发,2012,32(1):29-33.Yan Bing, Yang Zhengxi, Zhou Li, et al. Application of the combination of weightsofevidence model and fractal model in metallogenic prediction[J]. Mining Research and development, 2012,32(1):29-33.
|
[5]
|
肖克炎,丁建华,刘锐,等.美国“三步式”固体矿产资源潜力评价方法评述[J].地质评论,2006,52(6):793-798.Xiao Keyan, Ding Jianhua, Liu Rui, et al. The discussion of threepart form of nonfuel mineral resource assessment[J]. Geological Review, 2006,52(6):793-798.
|
[6]
|
肖克炎, 王勇毅, 陈郑辉,等.中国矿产资源评价新技术与评价新模型[M].北京:地质出版社, 2006:177-194.
|
[7]
|
李楠,肖克炎, 郭科,等.BP神经网络矿产资源评价程序模块设计及其应用研究——以东天山铜镍硫化物矿床为例[J].国土资源科技管理, 2012, 29(6):21-26.Li Nan, Xiao Keyan, Guo Ke, et al. Application of BP neural network in assessment of mineral resources:with CuNi sulfide deposit in east tianshan area as an example[J]. Scientific and Technological Management of Land and Resources, 2012, 29(6):21-26.
|
[8]
|
刘俊, 曹静平, 张晓黎,等.BP神经网络在矿产资源评价中的应用[J].安徽地质,2007,17(2):114-117.Liu Jun, Cao Jingping, Zhang Xiaoli, et al. Application of BP neural network to evaluation of mineral resources[J]. Geology of Anhui, 2007,17(2):114-117.
|
[9]
|
徐庆伶.基于半监督学习的遥感图像分类研究[D].西安:陕西师范大学,2010.
|
[10]
|
李二珠.半监督支持向量机高光谱遥感影像分类[D].徐州:中国矿业大学,2014.
|
[11]
|
Maulik U,Chakraborty D. Learning with transductive SVM for semisupervised pixel classification of remote sensing imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2013,77 :66-78.
|
[12]
|
Singla A,Patra S,Bruzzone L. A novel classification technique based on progressive transductive SVM learning[J]. Pattern Recognition Letters,2014,42:101-106.
|
[13]
|
王利文.直推式支持向量机的研究学习[D].重庆:重庆大学,2014.
|
[14]
|
Liu Hong, Huang Shangteng. Fuzzy transductive support vector machine for hypertext classification. Internat[J]. International Journal of Uncertainty Fuzziness and KnowledgeBased Systems.2004, 12(1):21-36.
|
[15]
|
Ye Wang. Training TSVM with the proper number of positive samples[J].Pattern Recognition Letters,2005,26(14):2187-2194.
|
[16]
|
丁要军, 蔡皖东.采用两阶段策略模型(KTSVM)的 P2P 流量识别方法[J].西安交通大学学报,2012,46(2):45-50.Ding Yaojun, Cai Wandong. P2P traffic identification via kmeans based transductive support vector machine[J]. Journal of Xian Jiaotong University, 2012,46(2):45-50.
|
[17]
|
齐芳,冯昕,徐其江.基于人工鱼群优化的直推式支持向量机分类算法[J].计算机应用与软件,2013,30(3):294-296.Qi Fang, Feng Xin, Xu Qijiang. Transductive support vector machine classification algorithm based on artificial fish school optimisation[J]. Computer Applications and Software, 2013,30(3):294-296.
|
[18]
|
李东,周可法,孙卫东,等.BP神经网络和SVM在矿山环境评价中的应用分析[J].干旱区地理,2015,38(1):128-134.Li Dong, Zhou Kefa, Sun Weidong, et al. Application of BP neural network and SVM in mine environmental assessment[J]. Arid Land Geography, 2015,38(1):128-134.
|