煤矿井下光学瓦斯检定器CO2吸收剂的时效特性及失效机制研究

Study on aging characteristics and failure mechanism of CO2 absorbents for optical interference methane detector in underground coal mines

  • 摘要: 矿井火灾或瓦斯爆炸后,准确检测甲烷浓度对救灾决策至关重要。然而,火灾产生的高浓度CO2会导致光学瓦斯检定器测量偏差,严重影响救灾决策,这种偏差源于光学瓦斯检定器中钠石灰吸收剂吸收CO2性能的退化。为研究煤矿井下灾区环境中影响光学瓦斯检定器检测准确性的因素及其规律,文中搭建模拟试验系统对不同条件下钠石灰的CO2吸收特性进行试验,探讨其时效特性和失效机制,并建立了CO2气氛下的甲烷浓度修正模型。结果表明,钠石灰的CO2有效吸收次数与CO2浓度负相关,CO2体积分数分别为5 %、10 %、15 %、20.99 %、27.18 % 和32.09 % 时,有效吸收次数分别为20、18、12、8、5和3次;不同CO2浓度和流速下,钠石灰吸收CO2的时效曲线均表现出“S”型的非线性特征;CO2浓度和流速的增加会显著提高单位时间吸收量,同时缩短高吸收效率持续时间,加速饱和失效进程。改变钠石灰的使用量、优化采样流速,对提高光学瓦斯检定器在高CO2浓度环境中的检测准确性有重要的指导意义。

     

    Abstract: After a mine fire or gas explosion, accurate detection of methane concentration is critical for disaster relief decisions. However, high-concentration CO2 from fires causes measurement deviations in optical interference methane detectors, as the CO2 absorption capacity of soda lime absorbent degrades over time. To investigate factors affecting detection accuracy in underground coal mine disaster areas, a simulation system was built to test soda lime's CO2 absorption under varied conditions. This revealed its time-dependent performance characteristics, failure mechanism, and enabled the establishment of a methane concentration correction model for CO2-rich atmospheres. The results show that soda lime's effective CO2 absorption cycles are negatively correlated with CO2 concentration. With CO2 concentrations of 5 %, 10 %, 15 %, 20.99 %, 27.18 %, and 32.09 % in the gas mixture, the effective absorption cycles are 20, 18, 12, 8, 5, and 3 times, respectively. The CO2 absorption time-efficiency curves exhibit an "S"-shaped nonlinear pattern under different concentrations and flow rates. Higher CO2 concentrations and gas flow rates increase absorption per unit time, shorten the high-efficiency duration, accelerate saturation/failure, and reduce the effective absorption time. Therefore, adjusting soda lime dosage and optimizing sampling flow rates are key to improving detection accuracy in high-CO2 environments.

     

/

返回文章
返回