一种反衍拟合的复小波改进方法在XRF图谱本底扣除中的应用

Application of an optimized method of complex wavelet with inverse derivative fitting in background subtraction of XRF spectra

  • 摘要: X射线荧光光谱(XRF)分析是煤中金属元素定量分析的重要方法,本底扣除准确度直接影响矿物金属分选的精细度。针对传统本底扣除方法本底契合度低、衍射峰面积误差大的问题,本文提出了一种基于复小波变换的反衍拟合XRF本底扣除优化方法。利用逆置寻谷的方法获得模拟本底谱线,通过拉格朗日插值法剥离谱线中的重叠峰谷,使模拟谱线进一步逼近实际本底,利用复小波变换方法对模拟本底谱线进行分解与重构,最终获得XRF图谱本底。利用反衍拟合的复小波改进方法对仿真图谱和真实图谱进行本底扣除实验,并与实数小波和双树复小波进行对比分析。实验结果表明,本文提出的方法衍射峰净峰面积误差低于1 %,本底面积误差低于0.1 %,本底准确性明显优于传统方法。

     

    Abstract: X-ray fluorescence spectroscopy analysis is a major method for quantitative analysis of metal elements in coal. The accuracy of background subtraction directly affects mineral metal sorting. As traditional background subtraction methods feature low background fit and large diffraction peak area errors, this study proposes an optimized method of complex wavelet transform with inverse derivative fitting for background subtraction. We obtained a simulated background spectral line through reversed peak searching and separated the overlapping peaks and valleys using Largrange's interpolation to push the simulated background close to the actual background. We then decompose and reconstruct the simulated background spectral line through complex wavelet transform to accomplish background subtraction of XRF analysis. We used the optimized method of complex wavelet with inverse derivative fitting for background subtraction of the simulated XRF spectrum and the real XRF spectrum, and compared with Continuous Wavelet and Dual-tree Complex Wavelet. The experimental results indicate that the optimized method outperforms the traditional methods in background subtraction accuracy, with less than 1 % of diffraction peak area error and less than 0.1 % of background area.

     

/

返回文章
返回