留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于能量传递效率的煤冲击倾向性评价指标

赵阳 侯煜坤 唐铁吾

赵阳, 侯煜坤, 唐铁吾. 基于能量传递效率的煤冲击倾向性评价指标[J]. 矿业科学学报, 2024, 9(1): 22-31. doi: 10.19606/j.cnki.jmst.2024.01.003
引用本文: 赵阳, 侯煜坤, 唐铁吾. 基于能量传递效率的煤冲击倾向性评价指标[J]. 矿业科学学报, 2024, 9(1): 22-31. doi: 10.19606/j.cnki.jmst.2024.01.003
ZHAO Yang, HOU Yukun, TANG Tiewu. Evaluation index of bursting liability of coal based on energy transfer efficiency[J]. Journal of Mining Science and Technology, 2024, 9(1): 22-31. doi: 10.19606/j.cnki.jmst.2024.01.003
Citation: ZHAO Yang, HOU Yukun, TANG Tiewu. Evaluation index of bursting liability of coal based on energy transfer efficiency[J]. Journal of Mining Science and Technology, 2024, 9(1): 22-31. doi: 10.19606/j.cnki.jmst.2024.01.003

基于能量传递效率的煤冲击倾向性评价指标

doi: 10.19606/j.cnki.jmst.2024.01.003
基金项目: 

国家自然科学基金 52034009

煤科院科技发展基金 2021CX-Ⅱ-12

煤科院科技发展基金 2021CX-Ⅱ-11

详细信息
    作者简介:

    赵阳(1989—),男,河南郑州人,博士,助理研究员,主要从事冲击地压方面的研究工作。Tel:010-84261775,E-mail:zhao_no1@126.com

  • 中图分类号: TU45; TD324

Evaluation index of bursting liability of coal based on energy transfer efficiency

  • 摘要: 冲击地压与煤体能量的积聚和释放密切相关,能量传递是评价冲击倾向性的关键参数之一。通过构建能量源扰动条件下的能量传递模型,关联冲击能量指数与弹性能量指数,提出能量释放比例φ,基于传递过程中的能量耗散模型提出了能量传递效率β,建立了包含2种参数的冲击倾向性评价方法。对煤矿11个煤层分层进行冲击倾向性鉴定试验,引用79个煤矿分层的冲击倾向性鉴定结果进行可靠性验证。结果表明:能量释放比例φ具有冲击地压边界条件的意义;能量传递效率β与泊松比具有负相关性,取值范围可以由模型边界条件推导获得;能量传递指数η的计算结果,与冲击倾向性鉴定的结果具有较高的一致性(88.61 %),能够反映煤体的冲击倾向性,并且可以成为“*”结果的评价依据,是一种适用于现有冲击倾向性评价体系的有效指标。
  • 图  1  煤样应力应变曲线及宏观破坏结果

    Figure  1.  Failure evolution of coal under static and dynamic loading conditions

    图  2  基于应力能量的矢量特性

    Figure  2.  Simplified transfer model of stress flow and energy flow

    图  3  红庆梁煤矿微震监测分布演化规律

    Figure  3.  Evolution of microseismic monitoring distribution in Hongqingliang Coal Mine

    图  4  能量指数计算方法示意图

    Figure  4.  Energy index calculation method

    图  5  能量释放比例与冲击能量指数弹性能量指数理论关系

    Figure  5.  Relationship between energy release proportion and impact energy index elastic energy index

    图  6  能量传递过程煤体应力变化情况

    Figure  6.  Stress variation of coal during energy transfer

    图  7  煤层中能量传递过程模型

    Figure  7.  Energy transfer process model in coal seam

    图  8  能量传递模式

    Figure  8.  Energy transfer model

    图  9  GCTS试验系统及煤样

    Figure  9.  GCTS test system and coal specimens

    表  1  煤动静载单轴压缩试验结果

    Table  1.   Static and dynamic load compression test results of coal

    编号 冲击速度/
    (m·s-1)
    高/mm 直径/mm 抗压强度/
    MPa
    Y1-2 0 100 50 7.87
    DM1 4.25 25 50 28.66
    DM2 5.62 25 50 30.24
    DM3 7.07 25 50 34.41
    DM4 8.84 25 50 37.82
    下载: 导出CSV

    表  2  试验测试结果及能量传递指数验证结果

    Table  2.   Test results and validation results of energy transfer index

    煤层 DT/
    ms
    WET KE RC/
    MPa
    泊松比ν φ β 能量传递指数η及结果 试验结果 综合结果
    X煤矿3-1煤 338.4 13.54 3.19 16.05 0.342 0.62 0.66 0.408弱 *
    X煤矿3-2煤 408.8 13.00 4.01 22.53 0.318 0.68 0.68 0.460弱 *
    X煤矿4-3煤 431.2 10.34 2.25 14.90 0.296 0.47 0.69 0.323弱 *
    Y煤矿1煤 346.4 18.77 3.00 15.34 0.306 0.62 0.69 0.422弱 *
    Y煤矿2煤 340.8 28.91 4.13 16.33 0.316 0.72 0.68 0.492弱 *
    Y煤矿14煤 481.6 14.18 3.27 19.26 0.286 0.63 0.70 0.441弱 *
    Y煤矿15煤 284.8 31.95 3.87 14.68 0.345 0.71 0.66 0.468弱 *
    Z煤矿2煤上 144.8 20.57 4.08 14.28 0.312 0.71 0.68 0.484弱 *
    Z煤矿2煤下 181.6 24.65 3.17 15.09 0.292 0.65 0.70 0.452弱 *
    Z煤矿6煤 456 21.96 2.49 15.99 0.304 0.55 0.69 0.378弱 *
    Z煤矿7煤 701.6 21.15 2.72 16.04 0.310 0.59 0.68 0.403弱
    注:“*”表示在《国标》附录A“冲击倾向性综合评判结果”中,推荐进一步进行综合判断的结果。
    下载: 导出CSV
  • [1] 齐庆新, 李一哲, 赵善坤, 等. 我国煤矿冲击地压发展70年: 理论与技术体系的建立与思考[J]. 煤炭科学技术, 2019, 47(9): 1-40.

    QI Qingxin, LI Yizhe, ZHAO Shankun, et al. Seventy years development of coal mine rockburst in China: establishment and consideration of theory and technology system[J]. Coal Science and Technology, 2019, 47(9): 1-40.
    [2] 齐庆新, 陈尚本, 王怀新, 等. 冲击地压、岩爆、矿震的关系及其数值模拟研究[J]. 岩石力学与工程学报, 2003, 22(11): 1852-1858.

    QI Qingxin, CHEN Shangben, WANG Huaixin, et al. Study on the relations among coal bump, rockburst and mining tremor with numerical simulation[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(11): 1852-1858.
    [3] 潘一山, 李忠华, 章梦涛. 我国冲击地压分布、类型、机理及防治研究[J]. 岩石力学与工程学报, 2003, 22(11): 1844-1851. doi: 10.3321/j.issn:1000-6915.2003.11.019

    PAN Yishan, LI Zhonghua, ZHANG Mengtao. Distribution, type, mechanism and prevention of rockbrust in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(11): 1844-1851. doi: 10.3321/j.issn:1000-6915.2003.11.019
    [4] 钱七虎. 岩爆、冲击地压的定义、机制、分类及其定量预测模型[J]. 岩土力学, 2014, 35(1): 1-6.

    QIAN Qihu. Definition, mechanism, classification and quantitative forecast model for rockburst and pressure bump[J]. Rock and Soil Mechanics, 2014, 35(1): 1-6.
    [5] NEWMAN C, NEWMAN D. Numerical analysis for the prediction of bump prone conditions: a southern Appalachian pillar coal bump case study[J]. International Journal of Mining Science and Technology, 2021, 31(1): 75-81. doi: 10.1016/j.ijmst.2020.12.020
    [6] ZHOU K Y, DOU L M, LI X W, et al. Coal burst and mining-induced stress evolution in a deep isolated main entry area—A case study[J]. Engineering Failure Analysis, 2022, 137: 106289. doi: 10.1016/j.engfailanal.2022.106289
    [7] LAWSON H, WEAKLEY A, MILLER A. Dynamic failure in coal seams: implications of coal composition for bump susceptibility[J]. International Journal of Mining Science and Technology, 2016, 26(1): 3-8. doi: 10.1016/j.ijmst.2015.11.002
    [8] JAVADI M, SAEEDI G, SHAHRIAR K. Evaluation of coal bump risk during underground mining: a case study of tabas coal mine[J]. Journal of Failure Analysis and Prevention, 2018, 18(6): 1503-1515. doi: 10.1007/s11668-018-0547-9
    [9] 李术才, 王汉鹏, 钱七虎, 等. 深部巷道围岩分区破裂化现象现场监测研究[J]. 岩石力学与工程学报, 2008, 27(8): 1545-1553.

    LI Shucai, WANG Hanpeng, QIAN Qihu, et al. In-situ monitoring research on zonal disintegration of surrounding rock mass in deep mine roadways[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(8): 1545-1553.
    [10] 王恩元, 冯俊军, 张奇明, 等. 冲击地压应力波作用机理[J]. 煤炭学报, 2020, 45(1): 100-110.

    WANG Enyuan, FENG Junjun, ZHANG Qiming, et al. Mechanism of rockburst under stress wave in mining space[J]. Journal of China Coal Society, 2020, 45(1): 100-110.
    [11] 谭云亮, 郭伟耀, 赵同彬, 等. 深部煤巷帮部失稳诱冲机理及"卸-固"协同控制研究[J]. 煤炭学报, 2020, 45(1): 66-81.

    TAN Yunliang, GUO Weiyao, ZHAO Tongbin, et al. Coal rib burst mechanism in deep roadway and "stress relief-support reinforcement" synergetic control and prevention[J]. Journal of China Coal Society, 2020, 45(1): 66-81.
    [12] JIANG Y D, ZHAO Y X, WANG H W, et al. A review of mechanism and prevention technologies of coal bumps in China[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9(1): 180-194. doi: 10.1016/j.jrmge.2016.05.008
    [13] DOU L M, MU Z L, LI Z L, et al. Research progress of monitoring, forecasting, and prevention of rockburst in underground coal mining in China[J]. International Journal of Coal Science & Technology, 2014, 1(3): 278-288.
    [14] 谭云亮, 郭伟耀, 辛恒奇, 等. 煤矿深部开采冲击地压监测解危关键技术研究[J]. 煤炭学报, 2019, 44(1): 160-172.

    TAN Yunliang, GUO Weiyao, XIN Hengqi, et al. Key technology of rock burst monitoring and control in deep coal mining[J]. Journal of China Coal Society, 2019, 44(1): 160-172.
    [15] 齐庆新, 潘一山, 舒龙勇, 等. 煤矿深部开采煤岩动力灾害多尺度分源防控理论与技术架构[J]. 煤炭学报, 2018, 43(7): 1801-1810.

    QI Qingxin, PAN Yishan, SHU Longyong, et al. Theory and technical framework of prevention and control with different sources in multi-scales for coal and rock dynamic disasters in deep mining of coal mines[J]. Journal of China Coal Society, 2018, 43(7): 1801-1810.
    [16] 宫凤强, 赵英杰, 王云亮, 等. 煤的冲击倾向性研究进展及冲击地压"人-煤-环"三要素机理[J]. 煤炭学报, 2022, 47(5): 1974-2010.

    GONG Fengqiang, ZHAO Yingjie, WANG Yunliang, et al. Research progress of coal bursting liability indices and coal burst "Human-Coal-Environment" three elements mechanism[J]. Journal of China Coal Society, 2022, 47(5): 1974-2010.
    [17] 卢志国, 鞠文君, 高富强, 等. 基于非线性储能与释放特征的煤冲击倾向性指标[J]. 岩石力学与工程学报, 2021, 40(8): 1559-1569.

    LU Zhiguo, JU Wenjun, GAO Fuqiang, et al. Bursting liability index of coal based on nonlinear storage and release characteristics of elastic energy[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(8): 1559-1569.
    [18] 吴学明, 王苏健, 张天军, 等. 煤层冲击倾向性评价的新指标体系[J]. 西安科技大学学报, 2019, 39(5): 782-789.

    WU Xueming, WANG Sujian, ZHANG Tianjun, et al. New index of coal seam impact tendencies[J]. Journal of Xi'an University of Science and Technology, 2019, 39(5): 782-789.
    [19] 蔡武, 窦林名, 韩荣军, 等. 基于损伤统计本构模型的煤层冲击倾向性研究[J]. 煤炭学报, 2011, 36(S2): 346-352.

    CAI Wu, DOU Linming, Han Rongjun, et al. Bursting liability of coal based on damage statistical constitutive model[J]. Journal of China Coal Society, 2011, 36(S2): 346-352.
    [20] 郭建卿, 苏承东. 不同煤试样冲击倾向性试验结果分析[J]. 煤炭学报, 2009, 34(7): 897-902.

    GUO Jianqing, SU Chengdong. Analysis on experimental results of rock burst tendency of different coal samples[J]. Journal of China Coal Society, 2009, 34(7): 897-902.
    [21] 潘一山, 耿琳, 李忠华. 煤层冲击倾向性与危险性评价指标研究[J]. 煤炭学报, 2010, 35(12): 1975-1978.

    PAN Yishan, GENG Lin, LI Zhonghua. Research on evaluation indices for impact tendency and danger of coal seam[J]. Journal of China Coal Society, 2010, 35(12): 1975-1978.
    [22] 祝捷, 姜耀东, 赵毅鑫, 等. 改进的Lippmann煤层平动突出模型[J]. 煤炭学报, 2007, 32(4): 353-357.

    ZHU Jie, JIANG Yaodong, ZHAO Yixin, et al. The improved Lippmann's translatory model of coal bumps[J]. Journal of China Coal Society, 2007, 32(4): 353-357.
    [23] 张月征, 纪洪广, 侯昭飞. 基于莫尔-库伦强度理论的岩石冲击危险性判据[J]. 金属矿山, 2014(11): 138-142.

    ZHANG Yuezheng, JI Hongguang, HOU Zhaofei. Instability criterion of rockburst risk based on mohr-coulomb strength theory[J]. Metal Mine, 2014(11): 138-142.
    [24] 左建平, 陈岩, 崔凡. 不同煤岩组合体力学特性差异及冲击倾向性分析[J]. 中国矿业大学学报, 2018, 47(1): 81-87.

    ZUO Jianping, CHEN Yan, CUI Fan. Investigation on mechanical properties and rock burst tendency of different coal-rock combined bodies[J]. Journal of China University of Mining & Technology, 2018, 47(1): 81-87.
    [25] 邓志刚. 动静载作用下煤岩多场耦合冲击危险性动态评价技术[J]. 煤炭科学技术, 2021, 49(4): 121-132.

    DENG Zhigang. Multi-field coupling dynamic evaluation method of rockburst hazard considering dynamic and static load[J]. Coal Science and Technology, 2021, 49(4): 121-132.
    [26] 宫凤强, 闫景一, 李夕兵. 基于线性储能规律和剩余弹性能指数的岩爆倾向性判据[J]. 岩石力学与工程学报, 2018, 37(9): 1993-2014.

    GONG Fengqiang, YAN Jingyi, LI Xibing. A new criterion of rock burst proneness based on the linear energy storage law and the residual elastic energy index[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(9): 1993-2014.
    [27] 赵毅鑫, 谢镕澴, 高艺瑞. 煤冲击倾向性的针贯入法测定[J]. 煤炭学报, 2023, 48(5): 1932-1942.

    ZHAO Yixin, XIE Ronghuan, GAO Yirui. Coal bursting tendency evaluation by needle penetration test[J]. Journal of China Coal Society, 2023, 48(5): 1932-1942.
    [28] 马念杰, 张文龙, 李军, 等. 冲击地压机理要素分析与评价[J]. 矿业科学学报, 2021, 6(6): 651-658. doi: 10.19606/j.cnki.jmst.2021.06.003

    MA Nianjie, ZHANG Wenlong, LI Jun, et al. Analysis and evaluation of essential factors for rock burst mechanism[J]. Journal of Mining Science and Technology, 2021, 6(6): 651-658. doi: 10.19606/j.cnki.jmst.2021.06.003
    [29] 王博楠, 谷拴成, 李军. 基于能量计算的预掘回撤通道顶板下沉量分析[J]. 矿业科学学报, 2023, 8(5): 623-632. doi: 10.19606/j.cnki.jmst.2023.05.004

    WANG Bonan, GU Shuancheng, LI Jun. Analysis on roof sag of pre-driven recovery room based on energy calculation[J]. Journal of Mining Science and Technology, 2023, 8(5): 623-632. doi: 10.19606/j.cnki.jmst.2023.05.004
    [30] 袁亮. 煤矿典型动力灾害风险判识及监控预警技术"十三五"研究进展[J]. 矿业科学学报, 2021, 6(1): 1-8. doi: 10.19606/j.cnki.jmst.2021.01.001

    YUAN Liang. Risk identification, monitoring and early warning of typical coal mine dynamic disasters during the 13th Five-Year Plan period[J]. Journal of Mining Science and Technology, 2021, 6(1): 1-8. doi: 10.19606/j.cnki.jmst.2021.01.001
    [31] 齐庆新, 欧阳振华, 赵善坤, 等. 我国冲击地压矿井类型及防治方法研究[J]. 煤炭科学技术, 2014, 42(10): 1-5.

    QI Qingxin, OUYANG Zhenhua, ZHAO Shankun, et al. Study on types of rock burst mine and prevention methods in China[J]. Coal Science and Technology, 2014, 42(10): 1-5.
    [32] 宫凤强, 潘俊锋, 江权. 岩爆和冲击地压的差异解析及深部工程地质灾害关键机理问题[J]. 工程地质学报, 2021, 29(4): 933-961.

    GONG Fengqiang, PAN Junfeng, JIANG Quan. The difference analysis of rock burst and coal burst and key mechanisms of deep engineering geological hazards[J]. Journal of Engineering Geology, 2021, 29(4): 933-961.
    [33] 齐庆新, 李一哲, 李海涛, 等. 冲击地压应力流思想及其控制理论初探[J]. 采矿与安全工程学报, 2021, 38(5): 866-875.

    QI Qingxin, LI Yizhe, LI Haitao, et al. Preliminary theoretical study on stress flow thought for coal bump and its control[J]. Journal of Mining & Safety Engineering, 2021, 38(5): 866-875.
    [34] 齐庆新, 王守光, 李海涛, 等. 冲击地压应力流理论及其数值实现[J]. 煤炭学报, 2022, 47(1): 172-179.

    QI Qingxin, WANG Shouguang, LI Haitao, et al. Stress flow theory for coal bump and its numerical implementation[J]. Journal of China Coal Society, 2022, 47(1): 172-179.
    [35] 赵善坤, 苏振国, 侯煜坤, 等. 采动巷道矿压显现特征及力构协同防控技术研究[J]. 煤炭科学技术, 2021, 49(6): 61-71.

    ZHAO Shankun, SU Zhenguo, HOU Yukun, et al. Study on mine pressure characteristics and force-structure cooperative prevention and control on mining roadway with deep thick hard roof[J]. Coal Science and Technology, 2021, 49(6): 61-71.
    [36] 赵善坤. 深孔顶板预裂爆破力构协同防冲机理及工程实践[J]. 煤炭学报, 2021, 46(11): 3419-3432.

    ZHAO Shankun. Mechanism and application of force-structure cooperative prevention and control on rockburst with deep hole roof pre-blasting[J]. Journal of China Coal Society, 2021, 46(11): 3419-3432.
    [37] JIANG J J, ZHANG Y, DENG Z G, et al. Experimental study on mechanical behavior and energy evolution characteristics of gas-filled deep coal under cyclic loading[J]. Processes, 2023, 11(2): 316. doi: 10.3390/pr11020316
    [38] 王凯, 赵恩彪, 郭阳阳, 等. 中间主应力影响下含瓦斯复合煤岩体变形渗流及能量演化特征研究[J]. 矿业科学学报, 2023, 8(1): 74-82. doi: 10.19606/j.cnki.jmst.2023.01.007

    WANG Kai, ZHAO Enbiao, GUO Yangyang, et al. Deformation, seepage and energy evolution characteristics of gas-bearing coal-rock under intermediate principal stress[J]. Journal of Mining Science and Technology, 2023, 8(1): 74-82. doi: 10.19606/j.cnki.jmst.2023.01.007
    [39] 谢和平, 周宏伟, 薛东杰, 等. 煤炭深部开采与极限开采深度的研究与思考[J]. 煤炭学报, 2012, 37(4): 535-542.

    XIE Heping, ZHOU Hongwei, XUE Dongjie, et al. Research and consideration on deep coal mining and critical mining depth[J]. Journal of China Coal Society, 2012, 37(4): 535-542.
    [40] 谢和平, 高峰, 鞠杨, 等. 深部开采的定量界定与分析[J]. 煤炭学报, 2015, 40(1): 1-10.

    XIE Heping, GAO Feng, JU Yang, et al. Quantitative definition and investigation of deep mining[J]. Journal of China Coal Society, 2015, 40(1): 1-10.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  247
  • HTML全文浏览量:  58
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-01
  • 修回日期:  2023-09-27
  • 刊出日期:  2024-02-29

目录

    /

    返回文章
    返回