褐煤中CH4/O2/N2气体竞争吸附特性的分子模拟研究

Molecular simulation on competitive adsorption characteristics of CH4/O2/N2 gas in lignite

  • 摘要: 为探究温度与摩尔比对煤中CH4/O2/N2气体竞争吸附的影响规律,采用巨正则蒙特卡罗法(GCMC)和分子模拟方法,研究云南小龙潭褐煤在不同温度(303.15~383.15 K)和压力0~480 kPa条件下CH4/O2和N2/O2二元混合气体竞争吸附特性。结果表明:①在试验温度和压力范围内,温度升高均会抑制煤对CH4、O2、N2三种气体的吸附,且煤对三种气体的吸附能力为CH4>O2>N2。②煤对CH4/O2吸附选择性系数与气体摩尔比基本无关,而随着温度的升高呈现减小趋势;对N2/O2的吸附选择性与温度和摩尔比的关系均不显著。③随着吸附量的增加,二元混合气体中任一组分的等量吸附热均呈线性增大;CH4/O2和N2/O2在同等吸附量条件下,摩尔比越大吸附热越低,但当CH4吸附量低于0.029 mmol/g时,CH4气体的等量吸附热与摩尔比的关系不大。研究结果为揭示CH4与空气竞争吸附行为对煤低温氧化的影响机理奠定了基础。

     

    Abstract: This study intends to explore the influence of temperature and molar ratio on the competitive adsorption of CH4/O2/N2 gas in coal. It probed into the competitive adsorption characteristics of CH4/O2 and N2/O2 binary mixed gas in Xiaolongtan lignite of Yunnan under different temperatures (303.15~383.15 K)and pressures (0~480 kPa)through grand canonical Monte Carlo (GCMC)and molecular simulation methods. Results show that : ① Within the range of test temperature and pressure, temperature will inhibit the adsorption of CH4, O2 and N2 by coal, and the adsorption capacity of coal to three gases is CH4>O2>N2. ② The selectivity coefficient of CH4/O2 adsorption is basically independent of the gas molar ratio, and shows decrease with the increase of temperature. The adsorption selectivity of N2/O2 on coal under different molar ratios was not significantly related to temperature and molar ratio. ③ With the increase of adsorption capacity, the isosteric adsorption heat of any component in the binary mixed gas shows linear increase. Under the same adsorption capacity, larger molar ratio of CH4/O2 and N2/O2 would lead to lower adsorption heat. However, when the adsorption capacity of CH4 is less than 0.029 mmol / g, the isosteric adsorption heat of CH4 gas shows little correlation with the molar ratio. The research reveals the influence mechanism of competitive adsorption behavior of CH4 and air on low temperature oxidation of coal.

     

/

返回文章
返回