基于CNN的煤岩瓦斯复合动力灾害预测

Prediction of coal-gas compound dynamic disaster based on convolutional neural network

  • 摘要: 随着我国煤矿开采逐渐进入深部区域,煤岩瓦斯复合动力灾害日益严重,对煤矿的安全生产造成极大威胁。基于某矿现场数据,采用智能预测手段对煤岩瓦斯复合动力灾害进行研究。首先,依据大数据处理流程,应用箱型图分析法(Box-plot)与多重插补法(MI)进行数据清洗,结合灰色关联度分析法(GRA)建立煤岩瓦斯复合动力灾害指标体系;然后应用主成分分析法(PCA)进行数据降维,结合深度学习中的卷积神经网络(CNN)建立基于BMGP-CNN的煤岩瓦斯复合动力灾害预测模型;运用现场案例数据将此模型与BP模型、随机森林(RF)模型、支持向量机(SVM)模型及人工神经网络(ANN)模型进行对比验证,发现BMGP-CNN模型预测结果的准确率最高,且该模型的收敛速度较快,能够在数秒内完成预测。研究结果对于煤岩瓦斯复合动力灾害的预测和防控具有重要意义。

     

    Abstract: As deep mining becomes prevalent in China's coal mining industry, coal-gas compound dynamic disasters pose increasing threat to the safety production of coal mines. This paper adopts the field data of Pingmei No. 8 coal mine for analysis, with the attempt to predict coal-gas compound dynamic disaster through convolutional neural network. Following the routine of the big data processing, we first employed Box-plot analysis and multiple interpolation method(MI)to clean the data. Combined with grey relation analysis(GRA), we established a coal-gas compound dynamic disaster index system. Then, principal component analysis(PCA)is used for dimensionality reduction of the data. Combined with the convolution neural network(CNN)in deep learning, we established the coal-gas compound dynamic disaster prediction model based on BMGP-CNN. The field data is used to compare and verify this model with BP, random forest(RF), support vector machine(SVM)and artificial neural network(ANN). It is found that BMGP-CNN model yields prediction results with satisfactory accuracy and quick convergence. The results offer implications for the prediction and prevention of coal-gas compound dynamic disasters.

     

/

返回文章
返回