Study on the strata displacement law of overlapping shield tunnels with different overlapping angles
-
摘要: 以以色列“红线轻轨”项目重叠隧道为背景,在分析现场监测数据的基础上采用Rhino6和FLAC3D软件建立了三维数值模型,研究了不同隧道叠交角度下盾构重叠隧道地表沉降、地层位移规律。研究结果表明,2条隧道从平行逐渐过渡到重叠状态时,随着叠交角度的增加隧道中间处测点累计沉降量增大,但累计沉降量除了受叠交角度影响外,还与穿越地层情况密切相关;在本工程地层条件下,由于2条隧道均穿越松散的库卡K1地层,叠交角度为60°时地表累计沉降达到最大。后建隧道开挖完成后,隧道叠交角度小于45°时,沉降槽宽度增大;大于45°而小于60°时,沉降槽宽度基本不变;大于60°时,沉降槽宽度减小;达到90°时,沉降槽左右对称。两侧隧道开挖完成后,隧道叠交角度达到75°时,两侧地层均改变移动方向。研究成果为重叠隧道的设计和施工提供参考。Abstract: Based on the overlapping tunnel of Tel Aviv Red Line Light Rail Project in Israel, this study established a three-dimensional numerical model by using Rhino6 and FLAC3D software on the basis of analysis of on-site monitoring data, to investigate the ground settlement and stratum displacement laws of shield overlapping tunnel at different overlapping angles.Results show that when the two tunnels gradually transit from horizontal to overlapping state, with the increase of overlapping angle of the two tunnels, the accumulated settlement at the measuring points in the middle of the two tunnels increases, but the accumulated settlement is not only affected by overlapping angle, but also closely related to the stratum traversing situation.Under the stratum condition of the project, when the overlapping angle is 60°, the accumulated surface settlement reaches the maximum because both tunnels pass through the loose reservoir K1 stratum.When the overlapping angle of the rear-built tunnel is less than 45° after excavation, the width of the settlement trough increases.When the overlapping angle is larger than 45° and smaller than 60°, the width of the settlement trough remains unchanged.The width of settlement trough decreases when the overlapping angle is larger than 60°.When the overlapping angle reaches 90°, the settlement trough is symmetrical on both sides.After excavation of tunnels on both sides, when the overlapping angle of the tunnels reaches 75°, the strata on both sides change the direction of movement.This research offer reference for the design and construction of overlapping tunnels.
-
Keywords:
- overlapping tunnels /
- EPB shield /
- overlapping angles /
- numerical simulation /
- stratum displacement
-
隧道的叠交角度是指2条隧道从水平平行变成完全重叠过程中,隧道中心连线与水平线的夹角,如图 1所示。重叠隧道是由平行(叠交角度为0°)逐渐过渡到完全重叠的隧道(叠交角度为90°)。过渡过程中,随着隧道叠交角度的改变,盾构施工对地表沉降、地层位移的影响也不一样,因此研究不同叠交角度下盾构施工所引起的地层位移规律,对于控制地表沉降及减少对周边建筑的影响具有重要意义。
目前,重叠隧道施工过程的研究方法主要为数值模拟、模型试验和理论计算等。
数值模拟是应用最广的研究方法,应用的软件主要有FLAC3D、ABAQUS、ANSYS等。Do等[1]采用FLAC3D软件,对软土地层中重叠隧道管片衬砌垂直于管片表面方向上的位移、力和弯矩,以及地表沉降和隧道水平位移进行了研究。Dias等[2]基于实际隧道工程,比较二维和三维模型的数值模拟方法,确定后者是最精确的方法。刘维等[3]采用FLAC3D软件,针对重叠隧道不同阶段施工中渗流作用和应力释放对隧道结构与地层产生的影响进行了研究。Yang等[4]利用FLAC3D软件,研究了在不同施工顺序条件下重叠隧道对地表沉降、不同地层位移、管片径向应力和位移的影响。Zheng等[5]、李婕等[6]采用有限元软件ABAQUS,分别对隧道重叠和不同地层条件下隧道周围土体的应力发展变化和孔隙压力规律进行研究。Nassem等[7]、Chakeri等[8]采用FLAC3D软件,对不同布设条件下施工过程中隧道整体的应力分布变化、沉降幅度等情况进行研究。Liu等[9]提出了一种研究后建隧道穿越先建隧道附近时,后建隧道对先建隧道产生影响的分析方法,并通过有限元分析法进行了验证。Yan等[10]、Gharehdash等[11]采用FLAC3D软件对盾构开挖过程中隧道的动力响应进行了研究。林刚[12]、孙钧等[13]、陈先国等[14]采用ANSYS软件对重叠隧道开挖过程进行模拟分析,研究了施工顺序对地层应力、地表沉降等参数的影响。Fang等[15]采用FLAC3D软件对重叠隧道的叠加效应进行了研究。
模型试验也是重叠隧道施工过程的研究方法之一。章慧健等[16]采用有限元数值模拟分析方法和室内离心模型试验,对上部后建隧道施工引起的下方先建隧道纵向位移变化规律进行了研究。谢雄耀等[17]通过室内模型试验,对软土地层中不同开挖顺序及推进速度条件下,先建隧道位移变化和内力变化规律进行了研究。Choi等[18]通过室内模型试验,研究了先建隧道与后建隧道间距、穿越地层土压力系数等对先建隧道的应力和应变的影响。
部分学者采用理论计算的方法对重叠隧道管片衬砌变形、周围地层位移变化等特征以及隧道开挖引起的地表沉降和沉降槽宽度变化进行了研究。Yang等[19]基于随机介质理论,用反分析法对收敛性和影响角度进行了研究。张治国等[20]基于复变函数理论和位移控制Schwarz交替法,提出了多种布置方式下双线盾构隧道先后开挖引发周围地表地层变形沉降的计算方法。龚建伍等[21]基于公路隧道设计规范,建立了根据双线隧道施工先后顺序的浅埋小净距隧道的围岩压力分析模型以及计算方法。赵东平等[22]、吴锋波等[23]基于Perk地表沉降预测公式提出了新的地表沉降槽宽度计算方法。刘波等[24]基于正态分布累计函数及随机介质理论,提出了地表沉降三维斜率和曲率的计算方法。韦征等[25]基于Timoshenko梁理论,提出了一种分析后建隧道上跨对先建隧道影响的计算方法。
现有对重叠隧道的研究大多针对上、下隧道完全重叠的状态,研究内容主要针对后建隧道盾构开挖对地层或先建隧道造成的影响,而对于上、下隧道处于不同叠交角度条件下,盾构开挖对地层沉降和位移的影响则少有研究。在实际工程中,先建隧道和后建隧道的相对位置往往从水平逐渐过渡到垂直,在此过程中两隧道叠交角度不断改变,对地层沉降和位移的影响也发生相应变化。本文基于以色列特拉维夫首条轨道交通“红线轻轨”项目盾构隧道工程,针对开挖过程中后建隧道与先建隧道叠交角度不断变化的工况,在分析现场监测数据基础上采用FLAC3D数值模拟软件建立不同叠交角度隧道模型,通过分析模拟结果,研究了不同叠交角度下盾构隧道施工对地表沉降、地层位移的影响及变化规律。
1. 工程概况
以色列“红线轻轨”项目隧道采用2台直径7.55 m的海瑞克盾构机开挖,管片外径7.2 m,内径6.5 m,厚度350 mm,直线段环宽1.5 m,曲线段环宽1.2 m。盾构隧道主要穿越库卡(特殊的钙质弱胶结砂/岩)地层,该地层是以色列当地独有的特殊地层,主要成分为方解石、石英和铁白云岩等,根据钙质胶结程度分为K1、K2、K3和K4四类。K1主要是钙质细砂,并含有10%~20%的、直径1~3 cm的砾石;K2、K3为胶结在一起的硬块,其表面较为粗糙,在交替夹层中有松散细砂;K4的强度接近普通岩石,无侧限抗压强度高达20 MPa[26]。
在EM车站至1/5/2/6竖井区间段,6号线隧道(下线)先行开挖,5号线隧道(上线)后行开挖,两隧道的相对位置由平行逐渐变为重叠,最小垂直重叠净距为5.5 m,曲线半径最小达到190 m。隧道穿越地层如图 2所示。6号线隧道大部分位于库卡K1、K2和K3的地层中,5号线隧道则主要穿越库卡K1、K2、K3和粉黏细砂层。各地层的力学参数见表 1。
表 1 地层力学参数Table 1. Mechanical parameters of strata地层类别 重度γ/(kN·m-3) 黏聚力c/kPa 内摩擦角φ/(°) 压缩模量Es/MPa 填土 19 8 12 4.2 粉黏细砂 20 10 35 50 黏土质砂 18 30 20 10 K1 19 10 35 60 K2,K3 19 25 35 80 2. 地层位移规律研究
2.1 地表沉降分析
EM车站至1/5/2/6竖井段地表道路狭窄且交通繁忙,交通部门禁止大范围布置地表测点,因此仅在2条隧道中间处布置了少量测点。本研究选取实际工程中隧道叠交角度0°~90°时,2条隧道中间地表所布设的自动化监测点监测数据进行分析,测点位置如图 3所示,时程曲线如图 4所示。
2条隧道中间处测点总累计沉降见表 2。6号线施工完成后测点累计沉降3~5 mm,占总沉降的25% ~35%;5号线施工完成后测点累计沉降在5~12 mm,占总沉降的65% ~75%。可以看出,上线隧道的施工对测点沉降影响更大。
表 2 地表沉降情况Table 2. Surface settlement测点编号 隧道叠交角度/(°) 总累计沉降值/mm 6号线 5号线 累计沉降/mm 占比/% 掘进地层 埋深/m 累计沉降/mm 占比/% 掘进地层 埋深/m DB-1 0 -9.03 -2.47 27.3 库卡(K2,K3) 17.3 -6.56 72.7 库卡(K2,K3) 17 DB-2 30 -12.55 -4.75 41.5 粉黏细砂 21.2 -6.68 59.5 库卡(K2,K3) 17.6 DB-3 45 -15.59 -3.20 20.5 库卡(K2,K3) 24.1 -12.39 79.5 库卡(K1) 18.2 DB-4 60 -16.93 -4.85 28.6 库卡(K1) 32.6 -12.08 71.4 库卡(K1) 20.7 DB-5 75 -14.21 -4.27 30.0 库卡(K2,K3) 37.1 -9.94 70.0 粉黏细砂 18.5 DB-6 90 -13.90 -3.91 28.1 库卡(K2,K3) 33.1 -9.99 71.9 粉黏细砂 12.7 2条隧道从水平逐渐过渡到重叠状态时,随着隧道叠交角度的增加,2条隧道中间处测点总累计沉降值增大。由表 2可知,地表累计沉降在叠交角度60°时达到最大值,此时6号线和5号线穿越地层均为库卡K1,说明累计沉降值除了受叠交角度影响外,还与隧道穿越地层情况密切相关。
2.2 深层土体水平位移分析
在里程为168 m和159 m位置(叠交角度80°)分别设置了测斜管C1和C2,对上行和下行2台盾构机掘进土体的影响进行监测,测斜管深度为36 m,每隔0.5 m读数1次。根据实测数据,6号线盾构开挖对20~36 m内土体影响较为明显;5号线盾构开挖对4~20 m内土体影响较为明显。后建隧道开挖后,位移变化主要集中于先建隧道下方和后建隧道上方,变化为2~ 7 mm;两隧道间土体位移变化较小,变化为0~ 3 mm。测斜管布置如图 5所示,在垂直于隧道方向,测斜管监测位移以隧道内侧方向为正;在平行于隧道方向,测斜管监测位移以隧道开挖方向为正,如图 5(c)所示。
测斜管实时监测数据(图 6)表明,6号线盾构到达测斜管C1时,土体在垂直和平行于隧道方向均向远离隧道开挖空间方向移动;盾构通过测斜管C2时,土体均向隧道开挖空间方向移动。5号线盾构到达测斜管C1及通过测斜管C2时,土体位移方向与6号线基本一致。盾构到达及通过后测斜管位移趋势如图 7所示。
3. 数值模拟
3.1 模型建立
实际工程中,由于测点布置数量过少,且集中于隧道轴线上,没有监测不同叠交角度下盾构隧道开挖沉降周围土体沉降的影响范围。同时,测斜点布置不足,对全区间土体位移规律也没有监测。故利用Rhino6建立模型,并划分网格导入到FLAC3D进行计算。由于总体区间过长,将其划分为多段区间并分别建立模型土体,范围为X方向取70 m,Y方向取60 m,共50环,Z方向取50 m。先建隧道(6号线隧道)按照现场实际埋深建立,后建隧道(5号线隧道)与先建隧道相对位置由水平变为垂直,两隧道间距5.8 m。
整体模型的边界条件设定为,模型顶面为自由面,底面X、Y、Z 3个方向位移约束,4个侧面为垂直法向位移约束。各分段模型示意图如图 8所示。
研究段地下水渗流较小,故不考虑地下水渗流作用。注浆层采用实体单元弹性模型,管片采用shell结构单元,参数见表 3。采用不同叠交角度模型进行数值模拟,并取目标截面(模型y=30 m处)作为研究对象。
表 3 数值模拟参数Table 3. Numerical simulation parameters名称 泊松比μ 体积模量K/MPa 剪切模量G/MPa 密度ρ/(kg·m-3) 管片 0.17 1.57×104 1.295×104 3 000 注浆层 0.20 4.57×102 3.960×102 2 500 3.2 地表沉降规律分析
不同叠交角度下先建隧道和后建隧道开挖后地表沉降曲线如图 9所示。不同叠交角度下地表沉降值和沉降槽宽度如图 10所示。
根据图 10(a),数值模拟结果和现场监测结果的地表沉降曲线符合程度较高,通过数值模拟进行预分析提取的沉降曲线与实际施工的情况基本符合,能够对不同工况下地表沉降规律、影响范围及地层位移等进行预测。
根据图 10(b)分析,先建隧道开挖完成后,后建隧道开挖过程中,0°~45°叠交角度时沉降槽变成不对称状态,宽度变大,随着叠交角度增加宽度变化量减少,这是因为隧道轴线距离较远,开挖引起的沉降叠加后水平范围扩张较大;当叠交角度在45°~60°时沉降槽宽度不变,这是因为此时隧道轴线距离较近,沉降叠加后水平范围扩张较小;当叠交角度在60°~90°时沉降槽宽度变小;随着叠交角度增加,宽度变化量增加,在叠交角度为90°时沉降槽保持对称,这是因为隧道轴线距离很近,沉降叠加后水平范围基本没有扩张。
3.3 地层位移分析
采用相同模型分析地层位移,将盾构开挖后地层位移数据导入到Tecplot软件中进行处理,提取不同叠交角度下水平方向数据并生成地层位移等值线位移云图进行分析。不同叠交角度下后建隧道开挖完成后,地层水平位移如图 11所示。
先建隧道开挖完成后,在隧道下方会生成两个地层位移中心。随着叠交角度增加,后建隧道开挖完成后会导致地层位移增大。叠交角度小于75°时,隧道两侧上下部分地层向隧道方向移动,土体位移较大;隧道两侧中部地层和隧道中间的地层向远离隧道方向移动,土体位移较小。叠交角度大于75°时,隧道周围地层均向隧道方向移动,上下部分地层土体位移较大,中部地层土体位移较小。地层水平位移变化如图 12所示。该变化规律与测斜管实测规律基本一致。
4. 结论
本文在以色列“红线轻轨”项目重叠段隧道不同叠交角度位置测点数据基础上,采用FLAC3D数值模拟软件建立不同叠交角度隧道模型,并对累计沉降量、沉降槽宽度和土体水平位移进行分析,得出了不同叠交角度对三者的影响规律。
(1) 叠交角度越大,穿越地层强度越低,叠交隧道开挖引起的地表累计沉降量越大。在重叠隧道设计中,应尽量避免2条隧道在较大叠交角度下同时穿越松散或松软地层。
(2) 先建隧道开挖完成后,后建隧道开挖完成后沉降槽宽度在叠交角度0°~45°时宽度增加,在45°~60°时宽度基本不变,在60°~90°时宽度降低,除叠交角度90°外,沉降槽均为不对称。根据不同叠交角度下沉降槽变化规律,为控制重叠隧道周边建构筑物沉降,设计人员可通过调整叠交角度来防止建构筑物的不均匀沉降。
(3) 后建隧道开挖完成后,隧道两侧的地层均向隧道方向移动。叠交角度小于75°时隧道中间及两侧中部地层均向远离隧道方向一侧移动,叠交角度大于75°时隧道周围地层均向隧道方向移动。在重叠隧道邻近深基础或地下建筑构筑物情况下,地层水平位移规律可为制定保护措施提供依据。
-
表 1 地层力学参数
Table 1 Mechanical parameters of strata
地层类别 重度γ/(kN·m-3) 黏聚力c/kPa 内摩擦角φ/(°) 压缩模量Es/MPa 填土 19 8 12 4.2 粉黏细砂 20 10 35 50 黏土质砂 18 30 20 10 K1 19 10 35 60 K2,K3 19 25 35 80 表 2 地表沉降情况
Table 2 Surface settlement
测点编号 隧道叠交角度/(°) 总累计沉降值/mm 6号线 5号线 累计沉降/mm 占比/% 掘进地层 埋深/m 累计沉降/mm 占比/% 掘进地层 埋深/m DB-1 0 -9.03 -2.47 27.3 库卡(K2,K3) 17.3 -6.56 72.7 库卡(K2,K3) 17 DB-2 30 -12.55 -4.75 41.5 粉黏细砂 21.2 -6.68 59.5 库卡(K2,K3) 17.6 DB-3 45 -15.59 -3.20 20.5 库卡(K2,K3) 24.1 -12.39 79.5 库卡(K1) 18.2 DB-4 60 -16.93 -4.85 28.6 库卡(K1) 32.6 -12.08 71.4 库卡(K1) 20.7 DB-5 75 -14.21 -4.27 30.0 库卡(K2,K3) 37.1 -9.94 70.0 粉黏细砂 18.5 DB-6 90 -13.90 -3.91 28.1 库卡(K2,K3) 33.1 -9.99 71.9 粉黏细砂 12.7 表 3 数值模拟参数
Table 3 Numerical simulation parameters
名称 泊松比μ 体积模量K/MPa 剪切模量G/MPa 密度ρ/(kg·m-3) 管片 0.17 1.57×104 1.295×104 3 000 注浆层 0.20 4.57×102 3.960×102 2 500 -
[1] Do N A, Dias D, Oreste P. Three-dimensional numerical simulation of mechanized twin stacked tunnels in soft ground[J]. Journal of Zhejiang University SCIENCE A, 2014, 15(11): 896-913. DOI: 10.1631/jzus.A1400117
[2] Dias D, Kastner R. Movements caused by the excavation of tunnels using face pressurized shields-analysis of monitoring and numerical modeling results[J]. Engineering Geology, 2013, 152(1): 17-25. DOI: 10.1016/j.enggeo.2012.10.002
[3] 刘维, 唐晓武, 甘鹏路, 等. 富水地层中重叠隧道施工引起土体变形研究[J]. 岩土工程学报, 2013, 35(6): 1055-1061. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201306011.htm Liu Wei, Tang Xiaowu, Gan Penglu, et al. Soil deformation induced by overlapping tunneling in water-bearing strata[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(6): 1055-1061. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201306011.htm
[4] Yang Z Y, Ding Y W, Jiang Y S, et al. Study of the construction sequence of overlapping tunnels by the shield tunneling method: a case study of the longest overlapping tunnel in China[J]. Advances in Civil Engineering, 2020, 2020: 1-9.
[5] Zheng G, Zhang T Q, Diao Y. Mechanism and countermeasures of preceding tunnel distortion induced by succeeding EPBS tunnelling in close proximity[J]. Computers and Geotechnics, 2015, 66: 53-65. DOI: 10.1016/j.compgeo.2015.01.008
[6] 李婕, 张琪, 张稳军. 不同地质条件下盾构隧道受力变形特性研究[J]. 土木工程学报, 2019, 52(S1): 69-77. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2019S1010.htm Li Jie, Zhang Qi, Zhang Wenjun. Research on inner force and deformation characteristics of shield tunnel under different geological conditions[J]. China Civil Engineering Journal, 2019, 52(S1): 69-77. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2019S1010.htm
[7] Naseem A, Schotte K, De Pauw B, et al. Ground settlements due to construction of triplet tunnels with different construction arrangements[J]. Advances in Civil Engineering, 2019, 2019: 1-18.
[8] Chakeri H, Hasanpour R, Ali Hindistan M, et al. Analysis of interaction between tunnels in soft ground by 3D numerical modeling[J]. Bulletin of Engineering Geology and the Environment, 2011, 70(3): 439-448. DOI: 10.1007/s10064-010-0333-8
[9] Liu X, Fang Q, Zhang D L, et al. Behaviour of existing tunnel due to new tunnel construction below[J]. Computers and Geotechnics, 2019, 110: 71-81. DOI: 10.1016/j.compgeo.2019.02.013
[10] Yan Q X, Song L Y, Chen H, et al. Dynamic response of segment lining of overlapped shield tunnels under train-induced vibration loads[J]. Arabian Journal for Science and Engineering, 2018, 43(10): 5439-5455. DOI: 10.1007/s13369-018-3147-9
[11] Gharehdash S, Barzegar M. Numerical modeling of the dynamic behaviour of tunnel lining in shield tunneling[J]. KSCE Journal of Civil Engineering, 2015, 19(6): 1626-1636. DOI: 10.1007/s12205-015-0406-0
[12] 林刚. 地铁重叠隧道施工顺序研究[J]. 现代隧道技术, 2006, 43(6): 23-28. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD200606004.htm Lin Gang. Study on the construction sequence of overlapped metro tunnels[J]. Modern Tunnelling Technology, 2006, 43(6): 23-28. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD200606004.htm
[13] 孙钧, 刘洪洲. 交叠隧道盾构法施工土体变形的三维数值模拟[J]. 同济大学学报: 自然科学版, 2002, 30(4): 379-385. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200204000.htm Sun Jun, Liu Hongzhou. 3-D numerical simulation of ground surface settlement under overlapped shield tunneling[J]. Journal of Tongji University, 2002, 30(4): 379-385. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200204000.htm
[14] 陈先国, 王显军. 近距离重叠隧道的二维和三维有限元分析[J]. 西南交通大学学报, 2003, 38(6): 643-646, 702. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT200306007.htm Chen Xianguo, Wang Xianjun. 2D and 3D finite element analyses of overlapping tunnels[J]. Journal of Southwest Jiaotong University, 2003, 38(6): 643-646, 702. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT200306007.htm
[15] Fang K D, Yang Z Y, Jiang Y S, et al. Surface subsidence characteristics of fully overlapping tunnels constructed using tunnel boring machine in a clay stratum[J]. Computers and Geotechnics, 2020, 125: 103679. DOI: 10.1016/j.compgeo.2020.103679
[16] 章慧健, 仇文革, 冯冀蒙, 等. 近距离重叠隧道盾构施工的纵向效应及对策研究[J]. 岩土力学, 2010, 31(11): 3569-3573. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201011036.htm Zhang Huijian, Qiu Wenge, Feng Jimeng, et al. Study of longitudinal mechanical behavior and countermeasure for neighborhood overlapped shield tunneling[J]. Rock and Soil Mechanics, 2010, 31(11): 3569-3573. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201011036.htm
[17] 谢雄耀, 牛俊涛, 杨国伟, 等. 重叠隧道盾构施工对先建隧道影响模型试验研究[J]. 岩石力学与工程学报, 2013, 32(10): 2061-2069. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201310016.htm Xie Xiongyao, Niu Juntao, Yang Guowei, et al. Model test for effects of construction of shield tunnelling in overlapping tunnels on existing tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(10): 2061-2069. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201310016.htm
[18] Choi J I, Lee S W. Influence of existing tunnel on mechanical behavior of new tunnel[J]. KSCE Journal of Civil Engineering, 2010, 14(5): 773-783. DOI: 10.1007/s12205-010-1013-8
[19] Yang J S, Liu B C, Wang M C. Modeling of tunneling-induced ground surface movements using stochastic medium theory[J]. Tunnelling and Underground Space Technology, 2004, 19(2): 113-123. DOI: 10.1016/j.tust.2003.07.002
[20] 张治国, 张成平, 奚晓广. 双线隧道不同布置方式下相互作用影响的地层位移解析[J]. 岩土工程学报, 2019, 41(2): 262-271. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902004.htm Zhang Zhiguo, Zhang Chengping, Xi Xiaoguang. Closed solutions to soil displacements induced by twin-tunnel excavation under different layout patterns[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 262-271. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902004.htm
[21] 龚建伍, 夏才初, 雷学文. 浅埋小净距隧道围岩压力计算与监测分析[J]. 岩石力学与工程学报, 2010, 29(S2): 4139-4145. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S2099.htm Gong Jianwu, Xia Caichu, Lei Xuewen. Analysis of field measurement and theoretical calculation on rock pressure in shallow-buried twin tunnels with small spacing[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S2): 4139-4145. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S2099.htm
[22] 赵东平, 沈振东, 王风, 等. 砂卵石泥岩复合地层盾构隧道施工导致的地表沉降槽宽度计算方法研究[J]. 现代隧道技术, 2022, 59(S1): 32-41. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD2022S1004.htm Zhao Dongping, Shen Zhendong, Wang Feng, et al. Study on calculation method of surface settlement trough width caused by shield tunneling in sandy pebble mudstone composite stratum[J]. Modern Tunnelling Technology, 2022, 59(S1): 32-41. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD2022S1004.htm
[23] 吴锋波, 郑卫强, 齐剑峰, 等. 地铁双线盾构区间地表横向沉降槽参数分析[J]. 地下空间与工程学报, 2021, 17(5): 1653-1663. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE202105037.htm Wu Fengbo, Zheng Weiqiang, Qi Jianfeng, et al. The ground transverse settlement tank parameters analysis of subway double line shield section[J]. Chinese Journal of Underground Space and Engineering, 2021, 17(5): 1653-1663. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE202105037.htm
[24] 刘波, 杨伟红. 考虑时间效应的隧道开挖三维沉降预测模型及应用[J]. 矿业科学学报, 2019, 4(5): 384-393. http://kykxxb.cumtb.edu.cn/article/id/237 Liu Bo, Yang Weihong. Prediction model and application of three-dimensional ground surface settlement induced by tunnel excavation considering time effect[J]. Journal of Mining Science and Technology, 2019, 4(5): 384-393. http://kykxxb.cumtb.edu.cn/article/id/237
[25] 韦征, 江玉生. 基于Timoshenko梁的盾构上跨对既有隧道纵向变形影响研究[J]. 矿业科学学报, 2021, 6(1): 30-41. DOI: 10.19606/j.cnki.jmst.2021.01.004 Wei Zheng, Jiang Yusheng. Study on the influence of above-crossing tunneling on the existing shield tunnels based on Timoshenko beam[J]. Journal of Mining Science and Technology, 2021, 6(1): 30-41. DOI: 10.19606/j.cnki.jmst.2021.01.004
[26] Huai P S, An H B, Bai X L, et al. Type selection of shields in water-rich kurkar stratum in Israel[J]. Tunnel Construction, 2020, 40(2): 276-282.