Abstract:
In order to study the dynamic performance of coal samples with different length diameter ratio under impact load, this paper used an improved Hopkinson compression bar experimental device (
ϕ75 mm), and carried out the impact compression experiments under 6 impact grades (4.18~8.03 m/s)and 4 aspect ratios(0.33~1.33).It analyzed the correlation between the dynamic parameters and the aspect ratio in combination with the gray correlation theory, and this study then established a 4-parameter uniaxial strength type statistical damage model of coal and rock based on the mechanical mechanism, Weibull distribution and D-P failure criterion.Results show that: ① The length diameter ratio of coal samples has a quadratic function relationship with the strain rate and dynamic compressive strength; The relationship between the dissipation energy and the aspect ratio is a quadratic function, and the dissipation energy decreases with the increase of the aspect ratio; The relationship between the electromagnetic energy and the aspect ratio is a linear function and keeps a positive correlation. ② According to the grey correlation theory, this study obtained the influence order of length diameter ratio of coal sample on dynamic parameters: electromagnetic energy(0.88)>dynamic compressive strength(0.84)>dissipation energy(0.81)>strain rate(0.78).③ The initial constitutive model is constructed based on Weibull distribution and D-P criterion, and the dynamic compressive strength
σmax and strain rate、the relationship between length to diameter ratio
n was corrected, and then the experimental stress-strain curves were compared to verify the reliability of the model(
R2>0.91).