西部矿区厚基岩特大采高工作面导水裂隙带发育特征

Characteristic of the water-conducting fracture zone development in thick overburden working face with extra-large mining height in western mining area

  • 摘要: 为了获得西部矿区部分厚基岩、中等埋深赋存条件下特大采高工作面裂隙发育特征,以上湾矿12401工作面为例,采用经验公式、数值模拟与现场实测相结合的方法进行了对比研究。结果表明:现阶段针对我国东西部矿区典型地质条件获得的经验公式很难适用于本文特大采高、厚基岩、中等埋深地质条件下的工作面。基于西部矿区地质条件的经验公式预测结果明显偏大,而基于东部矿区地质条件的经验公式预测结果则明显偏小。基于损伤本构模型的数值模拟结果与实测结果误差小于5 %,工作面推进过程中导水裂隙带的发育特征为:由于覆岩软硬岩层的存在,导水裂隙带向上呈台阶形发育;裂隙带形态随着采动程度的变化从“拱形”(三维“壳形”)转变为“马鞍形”(三维“盆状形”)的发育过程。

     

    Abstract: In order to obtain the fracture development characteristics of the working face with extra-large mining height under the condition of thick overburden and medium mining depth in mining areas in China's western regions, this paper adopted a comparative study by combining empirical equations, numerical simulation and field measurement in the panel 12401 of the Shangwan coal mine.The results show that the empirical equations drawn from data from the typical geological conditions of mining areas in eastern and western China are difficult to apply to this panel with extra-large mining height, thick overburden and medium buried depth.The prediction values of the empirical equations based on data from the geological condition in the western mining regions are generally higher, which are significantly smaller in the eastern mining regions.The value predicted by the numerical simulation based on the damage constitutive model is closer to the measured value than those derived from using empirical equations, with a relative error of less than 5 %.The paper obtained the characteristics of the water-conducting fracture zone development: due to the existence of soft and hard rock in the overburden, the water-conducting fracture zone develops upward as a step, and the shape changes from "arch"(three-dimensional "shell") to "saddle"(three-dimensional "basin shape") with the variation of mining degree.

     

/

返回文章
返回