留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤层气井低产原因及二次改造技术应用分析

李勇 胡海涛 王延斌 韩文龙 吴翔 吴鹏 刘度

李勇, 胡海涛, 王延斌, 韩文龙, 吴翔, 吴鹏, 刘度. 煤层气井低产原因及二次改造技术应用分析[J]. 矿业科学学报, 2022, 7(1): 55-70. doi: 10.19606/j.cnki.jmst.2022.01.006
引用本文: 李勇, 胡海涛, 王延斌, 韩文龙, 吴翔, 吴鹏, 刘度. 煤层气井低产原因及二次改造技术应用分析[J]. 矿业科学学报, 2022, 7(1): 55-70. doi: 10.19606/j.cnki.jmst.2022.01.006
Li Yong, Hu Haitao, Wang Yanbin, Han Wenlong, Wu Xiang, Wu Peng, Liu Du. Analysis of low production coalbed methane wells and application of secondary reconstruction technologies[J]. Journal of Mining Science and Technology, 2022, 7(1): 55-70. doi: 10.19606/j.cnki.jmst.2022.01.006
Citation: Li Yong, Hu Haitao, Wang Yanbin, Han Wenlong, Wu Xiang, Wu Peng, Liu Du. Analysis of low production coalbed methane wells and application of secondary reconstruction technologies[J]. Journal of Mining Science and Technology, 2022, 7(1): 55-70. doi: 10.19606/j.cnki.jmst.2022.01.006

煤层气井低产原因及二次改造技术应用分析

doi: 10.19606/j.cnki.jmst.2022.01.006
基金项目: 

国家自然科学基金 42072194

国家自然科学基金 U1910205

详细信息
    作者简介:

    李勇(1988—),男,山东安丘人,博士,副教授,博士生导师,主要从事煤与煤层气地质、煤系矿产资源方面的教学科研工作。E-mail:liyong@cumtb.edu.cn; liyong@cumtb.edu.cn

  • 中图分类号: TQ424.1

Analysis of low production coalbed methane wells and application of secondary reconstruction technologies

  • 摘要: 我国多数煤层气储层低孔低渗、构造煤发育,储层改造效果难以保障,单井产气量和采收率低。选择高效的储层改造和增产技术,提高低效井产量,是当前煤层气产业发展的关键任务。本文系统剖析“地质储层条件、工程施工改造和排采管理控制”影响的低产原因,分析煤层气井二次改造相关技术及应用效果,为不同类型低效井针对性改造提供建议。煤层气井可二次改造的低产原因主要包括压裂裂缝扩展不足、裂缝/管柱煤粉堵塞和压降面积受限等,改造中需考虑煤体结构分布、初次裂缝形态、储层渗透性、产气产水量变化、排采及控制设备适用性等因素。二次改造技术分为物理法、化学法、微生物法和其他方法,物理法中二次水力压裂、间接压裂和无水压裂技术以及化学法中酸化增透和泡沫酸洗技术运用较广泛。二次改造应根据地质条件、初次改造效果、工程排采情况选择针对性技术,避免储层再次伤害,以实现有效改造,提高煤层气单井和井网产气量。
  • 图  1  煤层气井产能影响因素

    Figure  1.  Influencing factors of coalbed methane well production

    图  2  不同水平压力差二次压裂裂缝延展对比

    Figure  2.  Fracture extension comparison after secondary fracturing with different horizontal pressures

    图  3  柿庄南区块SN-562D4、SN02-2D、SN-169井产能曲线

    Figure  3.  Production capacity curves of Well SN-562D4, SN02-2D and SN-169 in Shizhuangnan Block

    图  4  二次无水压裂技术原理

    Figure  4.  Principle of anhydrous fracturing technologies

    图  5  二次改造增产技术原理

    Figure  5.  Principle of secondary enhancing production technologies

    图  6  ZN2-02井排采曲线

    Figure  6.  Production curves for well ZN2-02

    图  7  针对部分工程排采原因的二次改造技术优选

    Figure  7.  Selection of secondary reconstruction technology for the reasons of engineering and drainage

    图  8  YSL306-2井排采曲线

    Figure  8.  Production curves for well YSL306-2

    表  1  煤层气井二次改造技术及适用性

    Table  1.   Coalbed methane well secondary reconstruction technology and its applicability

    技术方法 适用煤层 技术优点 存在困难
    物理法 二次水力压裂 煤体较硬 促进原生裂缝扩张和次生裂缝形成 水阻效应、黏土矿物水化膨胀、地层污染
    顶板间接压裂 厚度较薄煤层 施工简单、避免煤粉和煤层伤害 厚煤层和复杂构造区压裂效果差
    无水压裂 N2压裂需煤中无水、不能过于松软; CO2压裂适合低压储层、水敏性储层; 液氮压裂适合稳定煤层 N2压裂工序简单、周期短、增产效果好; CO2压裂有利于甲烷解吸; 液氮压裂节约水、避免污染 N2携带支撑剂困难; CO2压裂裂缝方向难控制、煤粉堵塞、超临界CO2注入难; 液氮压裂成本高、裂缝闭合速度快
    等离子脉冲 近距离无巷道和复杂构造 占地面积小、无须重新钻井 成本高、裂缝长度有限、不适用塑性地层
    声波法 干燥或低含水煤层 提高甲烷解吸与扩散 仪器下井难度大
    深孔爆破 含气量较低煤层 体积压裂效果好、瞬间能量密度大 裂缝带较小、方向难控制、不适用软煤层
    电液压裂 结构完整、饱和水煤层 无污染、裂缝方向可控、作业周期短 不适用松软煤层、有效半径在近井地带
    电压裂 超低渗煤层气储层 致裂效果明显 压裂范围小、无法控制裂缝方向、电压大
    水力喷射技术 埋藏浅、低机械强度、低渗煤层,薄互层、固井质量较差井 技术简单、造价低、方向可控、可同时产生多条裂缝或多层改造 流体易泄露、不适用深井
    微波辐射技术 含水或高含水储层 加热速度快、易于控制 微波下井难度大
    化学法 气体增透 盖层较好煤层 促进CH4解吸、溶解酸敏矿物 降低渗透率
    酸化增透 孔裂隙被矿物充填煤层 提高渗透性、生成CO2置换CH4 应用范围窄、管道腐蚀
    泡沫酸化 低压低渗煤层 疏通渗流通道、促进压裂液返排 地层伤害
    氧化剂解堵 低煤阶效果好 提高储层孔隙率,降低亲CH4能力 氧化剂成本高
    生物法 微生物增透 本源和外源微生物具备降解煤岩产CH4能力 增强煤层含气量 合适的微生物和繁殖环境、微生物法见效时间长
    其他方法 洗井 井壁稳定型煤层 清洗煤粉,实现井筒解堵 无法清洗砂粒
    洗泵 井壁稳定型煤层 确保煤层气连续稳定排采; 降低卡泵概率 煤粉清除不彻底; 可能损伤井筒
    动压调节、负压抽采 井壁稳定型煤层 稳定连续生产、提高开发效率 压力控制选择、储层敏感性
    井网改造 钻井数较多煤层 提高区块开发效率 增加施工成本
    下载: 导出CSV

    表  2  不同裂缝形态产能评价

    Table  2.   Productivity evaluation under different fracture morphologies

    井号 SN-562D4 SN02-2D SN-169
    裂缝半长/m 90.1 85.6 71.3
    缝高/m 31 27.6 35.1
    缝长与缝高之比 2.91 3.10 2.03
    实际缝高与厚度之比 3.73 4.46 5.67
    裂缝形态特征 高短缝 高短缝 宽短缝
    压前日产气量/(m3·d-1) 40 0 200
    压前日产水量/(m3·d-1) 0.2 1.5 2.2
    压后日产气量/(m3·d-1) 888 2 448 0
    压后日产水量/(m3·d-1) 1.2 0.4 0.5
    下载: 导出CSV

    表  3  不同地质条件二次改造技术选择

    Table  3.   Technical selection of secondary reconstruction under different geological conditions

    构造平缓区 断裂发育区 褶皱发育区
    地质特点 原生结构煤为主 断层发育区、储层裂隙发育 褶皱发育、煤体结构破碎
    低产原因 压裂效果差,有效缝长短 压裂沟通大裂隙、储层未能有效造缝 裂缝延伸距离短、支撑差,煤粉堵塞
    工艺设计 中大规模压裂、分段加砂 暂堵转向压裂,前置液加砂 顶板压裂
    下载: 导出CSV
  • [1] 罗平亚. 关于大幅度提高我国煤层气井单井产量的探讨[J]. 天然气工业, 2013, 33(6): 1-6.

    Luo Pingya. A discussion on how to significantly improve the single-well productivity of CBM gas wells in China[J]. Natural Gas Industry, 2013, 33(6): 1-6.
    [2] 李勇, 王延斌, 倪小明, 等. 煤层气低效井成因判识及治理体系构建研究[J]. 煤炭科学技术, 2020, 48(2): 185-193.

    Li Yong, Wang Yanbin, Ni Xiaoming, et al. Study on identification and control system construction of low efficiency coalbed methane wells[J]. Coal Science and Technology, 2020, 48(2): 185-193.
    [3] 朱庆忠, 刘立军, 陈必武, 等. 高煤阶煤层气开发工程技术的不适应性及解决思路[J]. 石油钻采工艺, 2017, 39(1): 92-96.

    Zhu Qingzhong, Liu Lijun, Chen Biwu, et al. Inadaptability of high-rank CBM development engineering and its solution idea[J]. Oil Drilling & Production Technology, 2017, 39(1): 92-96.
    [4] 朱庆忠, 左银卿, 杨延辉. 如何破解我国煤层气开发的技术难题: 以沁水盆地南部煤层气藏为例[J]. 天然气工业, 2015, 35(2): 106-109. doi: 10.3787/j.issn.1000-0976.2015.02.017

    Zhu Qingzhong, Zuo Yinqing, Yang Yanhui. How to solve the technical problems in the CBM development: a case study of a CMB gas reservoir in the southern Qinshui Basin[J]. Natural Gas Industry, 2015, 35(2): 106-109. doi: 10.3787/j.issn.1000-0976.2015.02.017
    [5] 冯青. 煤层气井低产伤害诊断方法及应用[J]. 煤田地质与勘探, 2019, 47(1): 86-91. doi: 10.3969/j.issn.1001-1986.2019.01.012

    Feng Qing. Method and application of diagnosis of low productivity damage of CBM wells[J]. Coal Geology & Exploration, 2019, 47(1): 86-91. doi: 10.3969/j.issn.1001-1986.2019.01.012
    [6] 陈立超, 王生维, 张典坤, 等. 固井水泥浆侵入对煤储层压裂裂缝延展的影响[J]. 天然气工业, 2019, 39(8): 74-81. doi: 10.3787/j.issn.1000-0976.2019.08.009

    Chen Lichao, Wang Shengwei, Zhang Diankun, et al. Impact of cement slurry invasion on the propagation of hydraulic fractures in coal reservoirs[J]. Natural Gas Industry, 2019, 39(8): 74-81. doi: 10.3787/j.issn.1000-0976.2019.08.009
    [7] 陈立超, 王生维. 煤岩弹性力学性质与煤层破裂压力关系[J]. 天然气地球科学, 2019, 30(4): 503-511. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201904007.htm

    Chen Lichao, Wang Shengwei. Relationship between elastic mechanical properties and equivalent fracture pressure of coal reservoir near wellbore[J]. Natural Gas Geoscience, 2019, 30(4): 503-511. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201904007.htm
    [8] 蔡永博, 王凯, 徐超. 煤岩单体及原生组合体变形损伤特性对比试验研究[J]. 矿业科学学报, 2020, 5(3): 278-283. http://kykxxb.cumtb.edu.cn/article/id/290

    Cai Yongbo, Wang Kai, Xu Chao. Comparative experimental study on deformation and damage charateristics of singele coal rock and primary coal-rock combination[J]. Journal of Mining Science and Technology, 2020, 5(3): 278-283. http://kykxxb.cumtb.edu.cn/article/id/290
    [9] 李勇, 汤达祯, 孟尚志, 等. 鄂尔多斯盆地东缘煤储层地应力状态及其对煤层气勘探开发的影响[J]. 矿业科学学报, 2017, 2(5): 416-424. http://kykxxb.cumtb.edu.cn/article/id/91

    Li Yong, Tang Dazhen, Meng Shangzhi, et al. The in-situ stress of coal reservoirs in east margin of Ordos Basin and its influence on coalbed methane development[J]. Journal of Mining Science and Technology, 2017, 2(5): 416-424. http://kykxxb.cumtb.edu.cn/article/id/91
    [10] 朱庆忠, 杨延辉, 王玉婷, 等. 高阶煤层气高效开发工程技术优选模式及其应用[J]. 天然气工业, 2017, 37(10): 27-34. doi: 10.3787/j.issn.1000-0976.2017.10.004

    Zhu Qingzhong, Yang Yanhui, Wang Yuting, et al. Optimal geological-engineering models for highly efficient CBM gas development and their application[J]. Natural Gas Industry, 2017, 37(10): 27-34. doi: 10.3787/j.issn.1000-0976.2017.10.004
    [11] 鲁秀芹, 杨延辉, 周睿, 等. 高煤阶煤层气水平井和直井耦合降压开发技术研究[J]. 煤炭科学技术, 2019, 47(7): 221-226.

    Lu Xiuqin, Yang Yanhui, Zhou Rui, et al. Study on technology of horizontal wells and vertical wells coupled depressurization in high rank coalbed methane[J]. Coal Science and Technology, 2019, 47(7): 221-226.
    [12] 闫欣璐, 唐书恒, 张松航, 等. 沁水盆地柿庄南区块煤层气低效井二次改造研究[J]. 煤炭科学技术, 2018, 46(6): 119-125.

    Yan Xinlu, Tang Shuheng, Zhang Songhang, et al. Study on reconstruction of inefficient well of coalbed methane in southern Shizhuang Block of Qingshui Basin[J]. Coal Science and Technology, 2018, 46(6): 119-125.
    [13] 张永平, 杨延辉, 邵国良, 等. 沁水盆地樊庄—郑庄区块高煤阶煤层气水平井开采中的问题及对策[J]. 天然气工业, 2017, 37(6): 46-54.

    Zhang Yongping, Yang Yanhui, Shao Guoliang, et al. Problems in the development of high-rank CBM horizontal wells in the Fanzhuang-Zhengzhuang Block in the Qinshui Basin and countermeasures[J]. Natural Gas Industry, 2017, 37(6): 46-54.
    [14] 薛光武, 刘鸿福, 要惠芳, 等. 渭北盆地韩城开发区煤层气储层特征分析[J]. 太原理工大学学报, 2012, 43(2): 185-189. doi: 10.3969/j.issn.1007-9432.2012.02.018

    Xue Guangwu, Liu Hongfu, Yao Huifang, et al. Features of coalbed methane reservoir in development zone of Hancheng in Weihe basin[J]. Journal of Taiyuan University of Technology, 2012, 43(2): 185-189. doi: 10.3969/j.issn.1007-9432.2012.02.018
    [15] 李勇, 汤达祯, 许浩, 等. 鄂尔多斯盆地柳林地区煤储层地应力场特征及其对裂隙的控制作用[J]. 煤炭学报, 2014, 39(S1): 164-168. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2014S1028.htm

    Li Yong, Tang Dazhen, Xu Hao, et al. Characteristic of in situ stress field in Liulin area, Ordos Basin and its control on coal fractures[J]. Journal of China Coal Society, 2014, 39(S1): 164-168. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2014S1028.htm
    [16] 刘升贵, 陈含, 彭智高, 等. 沁水盆地煤层气产能差异及采收率[J]. 辽宁工程技术大学学报: 自然科学版, 2013, 32(6): 721-724. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKY201306001.htm

    Liu Shenggui, Chen Han, Peng Zhigao, et al. Coalbed methane productivity differences and gas recovery in Qinshui Basin[J]. Journal of Liaoning Technical University: Natural Science, 2013, 32(6): 721-724. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKY201306001.htm
    [17] 杨延辉, 王玉婷, 陈龙伟, 等. 沁南西—马必东区块煤层气高效建产区优选技术[J]. 煤炭学报, 2018, 43(6): 1620-1626. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201806015.htm

    Yang Yanhui, Wang Yuting, Chen Longwei, et al. Optimization technology of efficient CBM productivity areas in Qinnanxi-Mabidong Block, Qinshui Basin, Shanxi, China[J]. Journal of China Coal Society, 2018, 43(6): 1620-1626. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201806015.htm
    [18] 朱庆忠, 鲁秀芹, 杨延辉, 等. 郑庄区块高阶煤层气低效产能区耦合盘活技术[J]. 煤炭学报, 2019, 44(8): 2547-2555. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201908030.htm

    Zhu Qingzhong, Lu Xiuqin, Yang Yanhui, et al. Coupled activation technology for low-efficiency productivity zones of high-rank coalbed methane in Zhengzhuang block, Shanxi, China[J]. Journal of China Coal Society, 2019, 44(8): 2547-2555. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201908030.htm
    [19] 王涛. 樊庄区块煤层气直井低产的关键影响因素及二次压裂改造[D]. 徐州: 中国矿业大学, 2020.
    [20] 周斌, 郝晋伟, 张春华. 松软煤层瓦斯钻孔失稳分析及动态密封技术[J]. 煤田地质与勘探, 2016, 44(4): 161-166. doi: 10.3969/j.issn.1001-1986.2016.04.031

    Zhou Bin, Hao Jinwei, Zhang Chunhua. Analysis on borehole instability under coupled multiple stress and dynamic sealing technology in soft coal seam[J]. Coal Geology & Exploration, 2016, 44(4): 161-166. doi: 10.3969/j.issn.1001-1986.2016.04.031
    [21] 吴国代, 桑树勋, 程军, 等. 基于卸压煤层气开发的构造煤储层孔渗特征与类型划分: 以淮南矿区为例[J]. 石油学报, 2013, 34(4): 712-719. doi: 10.3969/j.issn.1001-8719.2013.04.025

    Wu Guodai, Sang Shuxun, Cheng Jun, et al. Poroperm characteristics and classification of tectonic coal beds for pressure-relieved methane exploitation: a case study on Huainan mining area[J]. Acta Petrolei Sinica, 2013, 34(4): 712-719. doi: 10.3969/j.issn.1001-8719.2013.04.025
    [22] 邵先杰, 董新秀, 汤达祯, 等. 韩城矿区煤层气中低产井治理技术与方法[J]. 天然气地球科学, 2014, 25(3): 435-443. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201403018.htm

    Shao Xianjie, Dong Xinxiu, Tang Dazhen, et al. Treatment technology and method of low-to-moderate production coalbed methane wells in Hancheng mining area[J]. Natural Gas Geoscience, 2014, 25(3): 435-443. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201403018.htm
    [23] 刘世奇, 赵贤正, 桑树勋, 等. 煤层气井排采液面-套压协同管控: 以沁水盆地樊庄区块为例[J]. 石油学报, 2015, 36(S1): 97-108. doi: 10.7623/syxb2015S1012

    Liu Shiqi, Zhao Xianzheng, Sang Shuxun, et al. Cooperative control of working fluid level and casing pressure for coalbed methane production: a case study of Fanzhuang block in Qinshui Basin[J]. Acta Petrolei Sinica, 2015, 36(S1): 97-108. doi: 10.7623/syxb2015S1012
    [24] 赵欣, 姜波, 徐强, 等. 煤层气开发井网设计与优化部署[J]. 石油勘探与开发, 2016, 43(1): 84-90.

    Zhao Xin, Jiang Bo, Xu Qiang, et al. Well pattern design and deployment for coalbed methane development[J]. Petroleum Exploration and Development, 2016, 43(1): 84-90.
    [25] 秦勇, 吴建光, 张争光, 等. 基于排采初期生产特征的煤层气合采地质条件分析[J]. 煤炭学报, 2020, 45(1): 241-257. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202001025.htm

    Qin Yong, Wu Jianguang, Zhang Zhengguang, et al. Analysis of geological conditions for coalbed methane co-production based on production characteristics in early stage of drainage[J]. Journal of China Coal Society, 2020, 45(1): 241-257. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202001025.htm
    [26] 朱庆忠, 王宁, 张学英, 等. 煤层气井单相水流拟稳态排采模型与应用效果分析[J]. 煤炭学报, 2020, 45(3): 1116-1124. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202003026.htm

    Zhu Qingzhong, Wang Ning, Zhang Xueying, et al. Single-phase water flow quasi-steady-state drainage model and its application effect analysis in coal-bed methane wells[J]. Journal of China Coal Society, 2020, 45(3): 1116-1124. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202003026.htm
    [27] 王凯峰, 唐书恒, 张松航, 等. 柿庄南区块煤层气高产潜力井低产因素分析[J]. 煤炭科学技术, 2018, 46(6): 85-91, 113. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201806015.htm

    Wang Kaifeng, Tang Shuheng, Zhang Songhang, et al. Analysis on low production factors of coalbed methane high production potential well in Southern Shizhuang Block[J]. Coal Science and Technology, 2018, 46(6): 85-91, 113. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201806015.htm
    [28] 张建国, 刘忠, 姚红星, 等. 沁水煤层气田郑庄区块二次压裂增产技术研究[J]. 煤炭科学技术, 2016, 44(5): 59-63.

    Zhang Jianguo, Liu Zhong, Yao Hongxing, et al. Study on production increased technology with secondary hydraulic fracturing in Zhengzhuang Block of Qinshui Coalbed Methane Field[J]. Coal Science and Technology, 2016, 44(5): 59-63.
    [29] 王乾. 淮北某区块煤层气井二次改造关键技术[D]. 焦作: 河南理工大学, 2017.
    [30] 贾慧敏, 胡秋嘉, 祁空军, 等. 高阶煤煤层气直井低产原因分析及增产措施[J]. 煤田地质与勘探, 2019, 47(5): 104-110. doi: 10.3969/j.issn.1001-1986.2019.05.014

    Jia Huimin, Hu Qiujia, Qi Kongjun, et al. Reasons of low yield and stimulation measures for vertical CBM wells in high-rank coal[J]. Coal Geology & Exploration, 2019, 47(5): 104-110. doi: 10.3969/j.issn.1001-1986.2019.05.014
    [31] 马平华, 霍梦颖, 何俊, 等. 煤层气井压裂影响因素分析与技术优化: 以鄂尔多斯盆地东南缘韩城矿区为例[J]. 天然气地球科学, 2017, 28(2): 296-304. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201702013.htm

    Ma Pinghua, Huo Mengying, He Jun, et al. Influencing factors and technology optimization of coalbed methane well fracturing: Taking Hancheng mining area as an example[J]. Natural Gas Geoscience, 2017, 28(2): 296-304. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201702013.htm
    [32] 李军军, 郝春生, 王维, 等. 氮气震动压裂解堵工艺在煤层气井储层改造中的应用[J]. 煤矿安全, 2018, 49(10): 147-151.

    Li Junjun, Hao Chunsheng, Wang Wei, et al. Application of nitrogen vibration fracturing and plugging removal technology in reservoir reconstruction of coalbed methane well[J]. Safety in Coal Mines, 2018, 49(10): 147-151.
    [33] 贾进章, 吴禹默, 李斌, 等. 低渗透煤层合增透技术应用[J]. 辽宁工程技术大学学报: 自然科学版, 2020, 39(3): 208-213. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKY202003003.htm

    Jia Jinzhang, Wu Yumo, Li Bin, et al. Application of low permeability coal seam anti-reflection technology[J]. Journal of Liaoning Technical University: Natural Science, 2020, 39(3): 208-213. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKY202003003.htm
    [34] 万志杰. 芦岭煤矿煤层气井伴注液态CO2辅助水力压裂技术研究[J]. 中国煤炭地质, 2019, 31(7): 32-34, 47. doi: 10.3969/j.issn.1674-1803.2019.07.07

    Wan Zhijie. Study on CBM well hydraulic fracturing with assistant liquid CO2 concomitant injection in Luling coalmine[J]. Coal Geology of China, 2019, 31(7): 32-34, 47. doi: 10.3969/j.issn.1674-1803.2019.07.07
    [35] 张文勇, 司磊, 郭启文, 等. 煤层气井液氮伴注压裂增透机制及应用研究[J]. 煤炭科学技术, 2019, 47(11): 97-102.

    Zhang Wenyong, Si Lei, Guo Qiwen, et al. Study on mechanism and application of liquid nitrogen injection combined with fracturing to enhance permeability in CBM wells[J]. Coal Science and Technology, 2019, 47(11): 97-102.
    [36] 杨宇, 林璠, 曹煜, 等. 煤层气直井间接压裂施工的先导地质分析[J]. 煤田地质与勘探, 2016, 44(3): 46-50. doi: 10.3969/j.issn.1001-1986.2016.03.009

    Yang Yu, Lin Fan, Cao Yu, et al. Pilot geological analysis of indirect fracturing in vertical CBM well[J]. Coal Geology & Exploration, 2016, 44(3): 46-50. doi: 10.3969/j.issn.1001-1986.2016.03.009
    [37] 熊先钺, 边利恒, 王伟, 等. 韩城区块煤储层间接压裂地质主控因素研究[J]. 煤炭科学技术, 2017, 45(6): 189-195. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201706031.htm

    Xiong Xianyue, Bian Liheng, Wang Wei, et al. Research on main geological controlling factors of coal reservoir indirect fracturing in Hancheng Block[J]. Coal Science and Technology, 2017, 45(6): 189-195. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201706031.htm
    [38] 苏现波, 夏大平, 赵伟仲, 等. 煤层气生物工程研究进展[J]. 煤炭科学技术, 2020, 48(6): 1-30.

    Su Xianbo, Xia Daping, Zhao Weizhong, et al. Research advances of coalbed gas bioengineering[J]. Coal Science and Technology, 2020, 48(6): 1-30.
    [39] 郭红玉, 罗源, 马俊强, 等. 不同煤阶煤的微生物增透效果和机理分析[J]. 煤炭学报, 2014, 39(9): 1886-1891. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201409018.htm

    Guo Hongyu, Luo Yuan, Ma Junqiang, et al. Analysis of mechanism and permeability enhancing effect via microbial treatment on different-rank coals[J]. Journal of China Coal Society, 2014, 39(9): 1886-1891. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201409018.htm
    [40] 王晓蕾. 低渗透煤层提高瓦斯采收率技术现状及发展趋势[J]. 科学技术与工程, 2019, 19(17): 9-17. doi: 10.3969/j.issn.1671-1815.2019.17.002

    Wang Xiaolei. Present situation and development trend of gas recovery technology in low permeability coal seam[J]. Science Technology and Engineering, 2019, 19(17): 9-17. doi: 10.3969/j.issn.1671-1815.2019.17.002
    [41] 贾男. 煤层脉动式酸化压裂增透技术及其应用[J]. 中国安全科学学报, 2020, 30(10): 75-81.

    Jia Nan. Research and application of pulsating acid fracturing technology in coal seam[J]. China Safety Science Journal, 2020, 30(10): 75-81.
    [42] 张佩玉, 刘建伟, 滕强, 等. 水平井泡沫酸化技术的研究与应用[J]. 钻采工艺, 2010, 33(3): 112-114, 119, 146. doi: 10.3969/j.issn.1000-7393.2010.03.027

    Zhang Peiyu, Liu Jianwei, Teng Qiang, et al. Research & application of foam acidizing treatment technology in horizontal well[J]. Drilling & Production Technology, 2010, 33(3): 112-114, 119, 146. doi: 10.3969/j.issn.1000-7393.2010.03.027
    [43] 李宾飞, 李兆敏, 徐永辉, 等. 泡沫酸酸化技术及其在气井酸化中的应用[J]. 天然气工业, 2006, 26(12): 130-132, 207. doi: 10.3321/j.issn:1000-0976.2006.12.036

    Li Binfei, Li Zhaomin, Xu Yonghui, et al. Foamed acid acidizing and its application on gas wells[J]. Natural Gas Industry, 2006, 26(12): 130-132, 207. doi: 10.3321/j.issn:1000-0976.2006.12.036
    [44] 李莹, 郑瑞, 罗凯, 等. 筠连地区煤层气低产低效井成因及增产改造措施[J]. 煤田地质与勘探, 2020, 48(4): 146-155. doi: 10.3969/j.issn.1001-1986.2020.04.021

    Li Ying, Zheng Rui, Luo Kai, et al. Reasons of low yield and stimulation measures for CBM wells in Junlian area[J]. Coal Geology & Exploration, 2020, 48(4): 146-155. doi: 10.3969/j.issn.1001-1986.2020.04.021
    [45] 王培义, 马鹏鹏, 张贤印, 等. 中低温地热井钻井完井工艺技术研究与实践[J]. 石油钻探技术, 2017, 45(4): 27-32. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201704005.htm

    Wang Peiyi, Ma Pengpeng, Zhang Xianyin, et al. Drilling and completion technologies for of geothermal wells with medium and low temperatures[J]. Petroleum Drilling Techniques, 2017, 45(4): 27-32. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201704005.htm
    [46] 王少雷, 林晓英, 苏现波, 等. 空气动力洗井技术在煤层气井中的应用与评价[J]. 煤田地质与勘探, 2016, 44(2): 134-140. doi: 10.3969/j.issn.1001-1986.2016.02.024

    Wang Shaolei, Lin Xiaoying, Su Xianbo, et al. Application and evaluation of the well flushing technology with compressed air in CBM wells[J]. Coal Geology & Exploration, 2016, 44(2): 134-140. doi: 10.3969/j.issn.1001-1986.2016.02.024
    [47] 熊先钺. 韩城区块煤层气连续排采主控因素及控制措施研究[D]. 北京: 中国矿业大学(北京), 2014.
    [48] 徐凤银, 李曙光, 王德桂. 煤层气勘探开发的理论与技术发展方向[J]. 中国石油勘探, 2008, 13(5): 1-6, 77. doi: 10.3969/j.issn.1672-7703.2008.05.001

    Xu Fengyin, Li Shuguang, Wang Degui. Development trend of CBM exploration and development theories and technologies[J]. China Petroleum Exploration, 2008, 13(5): 1-6, 77. doi: 10.3969/j.issn.1672-7703.2008.05.001
    [49] 杨秀春, 叶建平. 煤层气开发井网部署与优化方法[J]. 中国煤层气, 2008, 5(1): 13-17, 4. doi: 10.3969/j.issn.1672-3074.2008.01.004

    Yang Xiuchun, Ye Jianping. Well pattern optimization design for CBM development[J]. China Coalbed Methane, 2008, 5(1): 13-17, 4. doi: 10.3969/j.issn.1672-3074.2008.01.004
    [50] 单学军, 张士诚, 李安启, 等. 煤层气井压裂裂缝扩展规律分析[J]. 天然气工业, 2005, 25(1): 130-132, 220. doi: 10.3321/j.issn:1000-0976.2005.01.038

    Shan Xuejun, Zhang Shicheng, Li Anqi, et al. Analyzing the fracture extended law of hydraulic fracturing in coalbed gas wells[J]. Natural Gas Industry, 2005, 25(1): 130-132, 220. doi: 10.3321/j.issn:1000-0976.2005.01.038
    [51] 徐兵祥, 李相方, 任维娜, 等. 基于均衡降压理念的煤层气井网井距优化模型[J]. 中国矿业大学学报, 2014, 43(1): 88-93. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201401013.htm

    Xu Bingxiang, Li Xiangfang, Ren Weina, et al. Optimization model of well pattern and spacing in CBM reservoirs using the concept of balanced depressurization[J]. Journal of China University of Mining & Technology, 2014, 43(1): 88-93. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201401013.htm
    [52] 杜维甲, 肖迅. 水力喷射径向钻孔在阜新刘家区煤层气开发中的应用[J]. 辽宁工程技术大学学报: 自然科学版, 2010, 29(1): 32-35. doi: 10.3969/j.issn.1008-0562.2010.01.009

    Du Weijia, Xiao Xun. Application of hydraulic jet drilling technique to CBM development in Finxin Liujia area[J]. Journal of Liaoning Technical University: Natural Science, 2010, 29(1): 32-35. doi: 10.3969/j.issn.1008-0562.2010.01.009
    [53] 王海东. 高应力低渗透煤层深孔爆破增透机理与效果[J]. 煤矿安全, 2012, 43(S1): 17-21.

    Wang Haidong. Enhancing permeability mechanism and effectiveness of deep-hole blasting in high stressed and low permeable coal seam[J]. Safety in Coal Mines, 2012, 43(S1): 17-21.
    [54] 朱正喜, 曹会, 陈沙沙. 国内水力喷射压裂工艺技术应用研究进展[J]. 石油矿场机械, 2014, 43(12): 82-87. doi: 10.3969/j.issn.1001-3482.2014.12.020

    Zhu Zhengxi, Cao Hui, Chen Shasha. Application and development of hydraulic jet fracturing in China[J]. Oil Field Equipment, 2014, 43(12): 82-87. doi: 10.3969/j.issn.1001-3482.2014.12.020
    [55] 李军军, 郝春生, 王维, 等. 等离子脉冲技术提高煤层气田采收率的理论与实践[J]. 煤田地质与勘探, 2018, 46(5): 193-198. doi: 10.3969/j.issn.1001-1986.2018.05.030

    Li Junjun, Hao Chunsheng, Wang Wei, et al. Theory and practice of plasma pulse technology for enhancing coalbed methane recovery[J]. Coal Geology & Exploration, 2018, 46(5): 193-198. doi: 10.3969/j.issn.1001-1986.2018.05.030
    [56] 姜永东, 鲜学福, 易俊, 等. 声震法促进煤中甲烷气解吸规律的实验及机理[J]. 煤炭学报, 2008, 33(6): 675-680. doi: 10.3321/j.issn:0253-9993.2008.06.017

    Jiang Yongdong, Xian Xuefu, Yi Jun, et al. Experimental and mechanical on the features of ultrasonic vibration stimulating the desorption of methane in coal[J]. Journal of China Coal Society, 2008, 33(6): 675-680. doi: 10.3321/j.issn:0253-9993.2008.06.017
    [57] 姜永东, 鲜学福, 刘占芳. 声震法提高煤储层渗透率的实验与机理[J]. 辽宁工程技术大学学报: 自然科学版, 2009, 28(S1): 236-239. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKY2009S1072.htm

    Jiang Yongdong, Xian Xuefu, Liu Zhanfang. Experiment and mechanism for enhancing coalbed penetrating coefficient with ultrasonic vibration[J]. Journal of Liaoning Technical University: Natural Science, 2009, 28(S1): 236-239. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKY2009S1072.htm
    [58] 林柏泉, 闫发志, 朱传杰, 等. 基于空气环境下的高压击穿电热致裂煤体实验研究[J]. 煤炭学报, 2016, 41(1): 94-99.

    Lin Baiquan, Yan Fazhi, Zhu Chuanjie, et al. Experimental study on crushing coal by electric and heat in the process of highvoltage breakdown in the air condition[J]. Journal of China Coal Society, 2016, 41(1): 94-99.
    [59] 秦勇, 邱爱慈, 张永民. 高聚能重复强脉冲波煤储层增渗新技术试验与探索[J]. 煤炭科学技术, 2014, 42(6): 1-7, 70. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201406004.htm

    Qin Yong, Qiu Aici, Zhang Yongmin. Experiment and discovery on permeability improved technology of coal reservoir based on repeated strong pulse waves of high energy accumulation[J]. Coal Science and Technology, 2014, 42(6): 1-7, 70. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201406004.htm
    [60] Biela J, Marxgut C, Bortis D, et al. Solid state modulator for plasma channel drilling[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2009, 16(4): 1093-1099. doi: 10.1109/TDEI.2009.5211860
    [61] 武杰, 田永东. 高聚能电脉冲技术在沁水盆地煤层气井的应用[J]. 煤田地质与勘探, 2018, 46(5): 206-211, 218. doi: 10.3969/j.issn.1001-1986.2018.05.032

    Wu Jie, Tian Yongdong. Application of high energy electric pulse technology in coalbed methane wells in Qinshui basin[J]. Coal Geology & Exploration, 2018, 46(5): 206-211, 218. doi: 10.3969/j.issn.1001-1986.2018.05.032
    [62] Maurel O, Reess T, Matallah M, et al. Electrohydraulic shock wave generation as a means to increase intrinsic permeability of mortar[J]. Cement and Concrete Research, 2010, 40(12): 1631-1638. doi: 10.1016/j.cemconres.2010.07.005
    [63] 鲍先凯, 刘源, 郭军宇, 等. 煤岩体在水中高压放电下致裂效果的定量评价[J]. 岩石力学与工程学报, 2020, 39(4): 715-725.

    Bao Xiankai, Liu Yuan, Guo Junyu, et al. Quantitative evaluation of fracturing effect of coal-rock masses under high-voltage discharge actions in water[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(4): 715-725.
    [64] 王浩, 司青, 罗宪, 等. 2种氧化剂对贫煤孔隙特性影响的对比研究[J]. 煤矿安全, 2020, 51(4): 1-4, 9. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ202004001.htm

    Wang Hao, Si Qing, Luo Xian, et al. Comparative study on effect of two oxidants on pore characteristics of lean coal[J]. Safety in Coal Mines, 2020, 51(4): 1-4, 9. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ202004001.htm
    [65] 冯玉龙, 司青, 王浩, 等. 氧化剂处理前后煤孔隙分形特征研究[J]. 煤矿安全, 2021, 52(2): 18-22. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ202102004.htm

    Feng Yulong, Si Qing, Wang Hao, et al. Study on fractal characteristics of coal pore before and after oxidation treatment[J]. Safety in Coal Mines, 2021, 52(2): 18-22. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ202102004.htm
    [66] 莫俊杰, 霸振, 关济朋, 等. 郑庄区块非自然下降井原因分析及对策研究[J]. 中国煤层气, 2019, 16(1): 28-30.

    Mo Junjie, Ba Zhen, Guan Jipeng, et al. Analysis and countermeasure research of non-natural decline wells in Zhengzhuang block[J]. China Coalbed Methane, 2019, 16(1): 28-30.
    [67] 边利恒, 熊先钺, 王炜彬. 低渗透软煤储层压裂改造研究[J]. 煤炭技术, 2017, 36(2): 185-186.

    Bian Liheng, Xiong Xianyue, Wang Weibin. Research on stimulation of low permeability soft coal formation[J]. Coal Technology, 2017, 36(2): 185-186.
    [68] 伊永祥. 沁水盆地柿庄南区块煤层气井生产特征及排采控制研究[D]. 北京: 中国地质大学(北京), 2020.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  757
  • HTML全文浏览量:  147
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-15
  • 修回日期:  2019-08-09
  • 刊出日期:  2022-02-01

目录

    /

    返回文章
    返回