通风换气对煤矿井下电缆巷火灾影响分析

Analysis of the influence of ventilation on fire in underground cable roadway of coal mine

  • 摘要: 为研究不同通风换气次数对煤矿井下电缆巷火灾的影响,基于FDS火灾模拟软件建立了某电缆巷全尺寸模型进行火灾模拟。模拟共设置四种通风换气次数工况,通过数值方法求解热驱动的低流速N-S方程得到了各工况下的电缆巷火灾烟气分布云图、空气浓度分布云图及火源点顶棚温度变化,确定了逆风侧最远通风距离与通风换气次数的关系式,并计算得到火源逆风侧最小烟气扩散距离为50.8 m。模拟结果表明,在通风逆风侧,风速小于1.70 m/s时,烟气达到最远扩散距离的时间随风速增大而增大,风速大于1.70 m/s时,烟气达到最远扩散距离的时间随风速增大而减小;逆风侧由于上部区域烟气含量更高,并受气流阻挡作用仍在不断堆积,而下部烟气含量较小,随风流向顺风侧蔓延,扩散作用明显,从而形成逆风侧同截面上下部空气含量差距较大、顺风侧空气含量分布较为均匀的情况;通风换气次数对于火源顶棚达到稳定温度所需时间无明显影响,但对其温度大小有一定影响,火源顶棚稳定温度与通风换气次数大小呈现反比趋势。研究结果可为工矿区电缆巷的火灾防治提供参考。

     

    Abstract: In order to study the influence of different ventilation times on the fire of cable roadway in coal mine and provide reference for fire prevention and control of cable roadway in industrial and mining areas, a full-scale model of a cable roadway was established by FDS fire simulation software.Four ventilation conditions of 0, 2, 4 and 6 ventilation times per hour were simulated.The low velocity N-S equation driven by heat was solved by numerical method, and the smoke distribution, air concentration distribution and roof temperature change of fire source were obtained under the four working conditions.The relationship between the farthest ventilation distance and ventilation frequency was determined by analyzing the simulation data.The minimum smoke diffusion distance on the upwind side of the fire source was calculated to be 50.8 m.The simulation results show that: on the upwind side of the fire source, when the wind speed is less than 1.70 m/s, the time when the smoke reaches the farthest diffusion distance increases with the increase of wind speed; when the wind speed is greater than 1.70 m/s, the time when the flue gas reaches the farthest diffusion distance decreases with the increase of wind speed; the upwind side of the fire source is located at the upper part of the fire source, and the high temperature flue gas cannot diffuse and accumulate continuously, while the lower part has less smoke, which can not block the effect of wind flow.The results show that the air content difference between the upper and lower parts is more obvious when it is carried to the downwind side by the air flow, while in the downwind side of the fire source, the air flow is consistent with the smoke diffusion direction, and the air flow accelerates the smoke diffusion, making the air content in the upper and lower parts of the downwind side at a more uniform level; the ventilation frequency has no obvious effect on the time of reaching the stable temperature of the fire source ceiling, but has a certain impact on its temperature.

     

/

返回文章
返回